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Preliminaries

For m ≥ 1, consider Porous Media Equation on Rd , d ≥ 1

∂tu = ∆(|u|m−1u), u(0, ·) = µ0, (t,x) ∈ R+×Rd . (PME)

For every µ0 ∈P = probability measures on Rd , there is a distributional
probability solution

u : t 7→ u(t), u(t,x)dx −→ µ0 as t→ 0,

i.e. u(t,x)dx ∈P for all t.

Our question: Is t 7→ u(t,x)dx a gradient flow in the ”manifold” P?

Previously: [Otto01] showed a formal gradient flow structure in the
measure metric space P2.

Our answer: Yes, with a more rigorous, purely geometric approach,
applicable to larger class of generalized PME

∂tu = ∆β (u)−div(D(x)b(u)u),

where β : R→ R monotone, D : Rd → Rd , b : R→ R.
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Preliminaries

Geometry and gradient flows on P

Gradient flows
For a Riemannian manifold M with gradient ∇M and E : M → R, a
gradient flow (wrt. E) is the equation for x : t 7→M

ẋt =−∇
ME (xt), t ≥ 0,

to be solved in the tangent bundle of M.
Hence: First need a Riemannian differential geometry on P. It can be
obtained by ”lifting the geometry from Rd to P”:

Riemannian geometry on P
Test functions = finitely-based functions

FC 2
b :=

{
F : P→R |F (µ) = f (µ(h1), . . . ,µ(hn)),n∈N,hi ∈C 2

c , f ∈C 1
b (Rn)

}
,

where µ(h) =
∫
Rd hdµ.
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Preliminaries

To obtain a tangent space TνP at ν ∈P, consider for ψ ∈ L2(Rd ,R;ν)

t 7→ µ
ν ,ψ
t := ν ◦ (Id + tψ)−1.

Since for F ∈FC 2
b , F : µ 7→ f (µ(h1), . . . ,µ(hn)), one has

diffνF (ψ) =
d

dt
F (µ

ν ,ψ
t )|t=0 =

〈 n

∑
k=1

∂k f (ν(h1), . . . ,ν(hn))∇hk ,ψ
〉
L2(ν)

,

one is led to consider
TνP := L2(Rd ,Rd ;ν)

and

∇
PF (ν) :=

n

∑
k=1

∂k f (ν(h1), . . . ,ν(hn))∇hk .

This geometry is not an arbitrary one, but the one obtained by the
aforementioned ”geometry lifting” from Rd to P. Also, ∇PE can be
extended to larger classes of functions E : P → R.
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Results: Nonlinear FP-equations as gradient flows on P

The Porous Media Equation

Let µ0 ∈P and let u : t 7→ u(t) be the unique probability solution to
(PME) with initial datum µ0 in ∩δ>0L

∞((δ ,∞)×Rd).

Theorem (R./Röckner23)

µt := u(t,x)dx solves the gradient flow

d

dt
µt =−∇

PE (µt), t ≥ 0

in P, with energy

E : µ = u(x)dx 7→ 1

m−1

∫
Rd

u(x)m dx ,

and ∇PE (µt) = ∇(u(t)m)
u(t) ∈ L2(Rd ,Rd ; µt). If d ≥ 3 and µ0 ∈ L∞, then

∫ T

0
|∇PE (µt)|2Tµt P

dt < ∞, ∀T > 0.

Note: Applies to the Barenblatt solutions with initial datum µ0 = δx .
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Results: Nonlinear FP-equations as gradient flows on P

Generalized Porous Media Equation

To treat
∂tu = ∆β (u)−div

(
D(x)b(u)u

)
, (gPME)

change the geometry on P: Instead of

(TνP,〈·, ·〉TνP) =
(
L2(Rd ,Rd),〈·, ·〉L2(ν)

)
,

consider weighted metric tensor:

(TνP,〈·, ·〉TνP) =
(
L2(Rd ,Rd),〈b(u)−1·, ·〉L2(ν)

)
,

which leads to a different gradient ∇P
b .
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Results: Nonlinear FP-equations as gradient flows on P

Assumptions on β ,D,b

(i) β ∈ C 1(R), β (0) = 0, γ ≤ β ′(r)≤ γ1, r ∈ R, for 0 < γ < γ1 < ∞.

(ii) b ∈ Cb(R)∩C 1(R),b ≥ b0 > 0.

(iii) Φ ∈ C 1(Rd), ∇Φ ∈ Cb(Rd ,Rd), D =−∇Φ.

(iv) (divD)− ∈ L∞(Rd) and (divD)+ ∈ (L2(Rd) +L∞(Rd)).

(v) Φ ∈W 2,1
loc (Rd), Φ≥ 1, lim

|x |→∞

Φ(x) = +∞ and there exists m ∈ [2,∞)

such that Φ−m ∈ L1(Rd).
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Results: Nonlinear FP-equations as gradient flows on P

Let η(r) :=
∫ r

0

∫ s
1

β ′(w)
wb(w)dw ds, r ∈ R+, and

E (v(x)dx) :=
∫
Rd

η(v(x))dx +
∫
Rd

Φ(x)v(x)dx .

Let µ0 = v0(x)dx ,v0 ∈ L∞(Rd) such that v0 logv0 ∈ L1(Rd).

Theorem (R./Röckner23)

There is a unique solution t 7→ µt = u(t,x)dx to (gPME) in
L∞([0,∞]×Rd), and it satisfies the gradient flow

d

dt
µt =−∇

P
b E (µt), t ≥ 0

in P, where E is as above. Moreover,

∇
P
b E (µt) =

∇(u(t)m)

u(t)
−b(u(t))D ∈ L2(Rd ,Rd ; µt).
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Results: Nonlinear FP-equations as gradient flows on P

Further results and remarks

(i) If, in addition, the ”balance condition”

γ1∆Φ(x)−b0|∇Φ(x)|2 ≤ 0, dx−a.s.,

holds, the energy E is a Lyapunov function for t 7→ µt , i.e.
E (µt)≤ E (µs), s ≤ t. Moreover, u(t)−→ u∞ in L1(Rd) as t→ ∞,
and u∞ can explicitly be calculated from E .

(ii) For β (r) = σ r , σ ∈ (0,∞), b(r) = b0 ∈ (0,∞), E is the classical
Boltzmann entropy function.

(iii) ∇P
b E (µt) ∈

{
b(u(t))∇ζ |ζ ∈ C∞

c (Rd))
}

, where the closure is taken in(
L2(Rd ,Rd ; µt),〈b(u(t))−1·, ·〉L2(µt)

)
.

(iv) Extensions of our results to more general equations

∂tu = div
(
A(u)∇u

)
−div

(
B(u)D(x)u

)
,

where A,B : R→ Rd×d are matrix-valued seem possible.
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Results: Nonlinear FP-equations as gradient flows on P

Thank you for your attention!
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