Nonlinear Fokker–Planck equations as gradient flows on the space of probability measures

Marco Rehmeier Scuola Normale Superiore Pisa

joint work with Michael Röckner (Bielefeld) arXiv:2306.09530, 2023

19.10.2023

Marco Rehmeier

Table of Contents

Preliminaries

 \bigcirc Results: Nonlinear FP-equations as gradient flows on $\mathscr P$

Marco Rehmeier 2 / 12

For $m \ge 1$, consider Porous Media Equation on \mathbb{R}^d , $d \ge 1$

$$\partial_t u = \Delta(|u|^{m-1}u), \ u(0,\cdot) = \mu_0, \ (t,x) \in \mathbb{R}_+ \times \mathbb{R}^d.$$
 (PME)

For every $\mu_0 \in \mathscr{P} =$ probability measures on \mathbb{R}^d , there is a distributional probability solution

$$u: t \mapsto u(t), \quad u(t,x)dx \longrightarrow \mu_0 \text{ as } t \to 0,$$

i.e. $u(t,x)dx \in \mathscr{P}$ for all t.

Our question: Is $t \mapsto u(t,x)dx$ a gradient flow in the "manifold" \mathscr{P} ?

Previously: [Otto01] showed a formal gradient flow structure in the measure metric space \mathcal{P}_2 .

Our answer: Yes, with a more rigorous, purely geometric approach, applicable to larger class of *generalized PME*

$$\partial_t u = \Delta \beta(u) - \operatorname{div}(D(x)b(u)u),$$

where $\beta : \mathbb{R} \to \mathbb{R}$ monotone, $D : \mathbb{R}^d \to \mathbb{R}^d$, $b : \mathbb{R} \to \mathbb{R}$.

Geometry and gradient flows on ${\mathscr P}$

Gradient flows

For a Riemannian manifold M with gradient ∇^M and $E: M \to \mathbb{R}$, a gradient flow (wrt. E) is the equation for $x: t \mapsto M$

$$\dot{x}_t = -\nabla^M E(x_t), \quad t \ge 0,$$

to be solved in the tangent bundle of M.

Hence: First need a Riemannian differential geometry on \mathscr{P} . It can be obtained by "lifting the geometry from \mathbb{R}^d to \mathscr{P} ":

Riemannian geometry on ${\mathscr P}$

Test functions = finitely-based functions

$$\mathscr{F}C_b^2 := \left\{ F : \mathscr{P} \to \mathbb{R} \,|\, F(\mu) = f(\mu(h_1), \dots, \mu(h_n)), n \in \mathbb{N}, h_i \in C_c^2, f \in C_b^1(\mathbb{R}^n) \right\}$$

where $\mu(h) = \int_{\mathbb{R}^d} h \, d\mu$.

Marco Rehmeier 4/1

To obtain a tangent space $T_v\mathscr{P}$ at $v\in\mathscr{P}$, consider for $\psi\in L^2(\mathbb{R}^d,\mathbb{R};v)$

$$t\mapsto \mu^{v,\psi}_t:=v\circ (\operatorname{\sf Id} + t\psi)^{-1}.$$

Since for $F \in \mathscr{F}C_b^2$, $F : \mu \mapsto f(\mu(h_1), \dots, \mu(h_n))$, one has

$$\operatorname{diff}_{v}F(\psi) = \frac{d}{dt}F(\mu_{t}^{v,\psi})_{|t=0} = \left\langle \sum_{k=1}^{n} \partial_{k}f(v(h_{1}),\ldots,v(h_{n}))\nabla h_{k},\psi\right\rangle_{L^{2}(v)},$$

one is led to consider

$$T_{\mathcal{V}}\mathscr{P}:=L^{2}(\mathbb{R}^{d},\mathbb{R}^{d};\mathcal{V})$$

and

$$\nabla^{\mathscr{P}}F(v):=\sum_{k=1}^n\partial_kf(v(h_1),\ldots,v(h_n))\nabla h_k.$$

This geometry is not an arbitrary one, but the one obtained by the aforementioned "geometry lifting" from \mathbb{R}^d to \mathscr{P} . Also, $\nabla^{\mathscr{P}} E$ can be extended to larger classes of functions $E: \mathscr{P} \to \mathbb{R}$.

Marco Rehmeier 5/12

Table of Contents

Preliminaries

igotimes Results: Nonlinear FP-equations as gradient flows on ${\mathscr P}$

Marco Rehmeier 6/12

The Porous Media Equation

Let $\mu_0 \in \mathscr{P}$ and let $u: t \mapsto u(t)$ be the unique probability solution to (PME) with initial datum μ_0 in $\cap_{\delta>0} L^{\infty}((\delta,\infty) \times \mathbb{R}^d)$.

Theorem (R./Röckner23)

 $\mu_t := u(t,x)dx$ solves the gradient flow

$$rac{d}{dt}\mu_t = -
abla^{\mathscr{P}} E(\mu_t), \quad t \geq 0$$

in \mathcal{P} , with energy

$$E: \mu = u(x)dx \mapsto \frac{1}{m-1} \int_{\mathbb{R}^d} u(x)^m dx,$$

and
$$\nabla^{\mathscr{P}} E(\mu_t) = \frac{\nabla (u(t)^m)}{u(t)} \in L^2(\mathbb{R}^d, \mathbb{R}^d; \mu_t)$$
. If $d \geq 3$ and $\mu_0 \in L^{\infty}$, then

$$\int_0^T |\nabla^{\mathscr{P}} E(\mu_t)|^2_{\mathcal{T}_{\mu_t}\mathscr{P}} dt < \infty, \quad \forall T > 0.$$

Marco Rehmeier 7 /

Generalized Porous Media Equation

To treat

$$\partial_t u = \Delta \beta(u) - \text{div} (D(x)b(u)u),$$
 (gPME)

change the geometry on \mathcal{P} : Instead of

$$(T_{\nu}\mathscr{P},\langle\cdot,\cdot\rangle_{T_{\nu}\mathscr{P}})=\left(L^{2}(\mathbb{R}^{d},\mathbb{R}^{d}),\langle\cdot,\cdot\rangle_{L^{2}(\nu)}\right),$$

consider weighted metric tensor:

$$(T_{\mathcal{V}}\mathscr{P},\langle\cdot,\cdot\rangle_{T_{\mathcal{V}}\mathscr{P}}) = (L^{2}(\mathbb{R}^{d},\mathbb{R}^{d}),\langle b(u)^{-1}\cdot,\cdot\rangle_{L^{2}(\mathcal{V})}),$$

which leads to a different gradient $\nabla_{\mathbf{b}}^{\mathscr{P}}$.

Marco Rehmeier 8/12

Assumptions on β, D, b

- (i) $\beta \in C^1(\mathbb{R}), \ \beta(0) = 0, \ \gamma \leq \beta'(r) \leq \gamma_1, \ r \in \mathbb{R}, \ \text{for} \ 0 < \gamma < \gamma_1 < \infty.$
- (ii) $b \in C_b(\mathbb{R}) \cap C^1(\mathbb{R}), b > b_0 > 0.$
- (iii) $\Phi \in C^1(\mathbb{R}^d)$, $\nabla \Phi \in C_b(\mathbb{R}^d, \mathbb{R}^d)$, $D = -\nabla \Phi$.
- (iv) $(\operatorname{div} D)^- \in L^{\infty}(\mathbb{R}^d)$ and $(\operatorname{div} D)^+ \in (L^2(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d))$.
- (v) $\Phi \in W^{2,1}_{\mathrm{loc}}(\mathbb{R}^d), \ \Phi \geq 1, \lim_{|x| \to \infty} \Phi(x) = +\infty \ \text{and there exists} \ m \in [2,\infty)$ such that $\Phi^{-m} \in L^1(\mathbb{R}^d)$.

Let
$$\eta(r) := \int_0^r \int_1^s rac{eta'(w)}{wb(w)} dw \, ds, \; r \in \mathbb{R}_+$$
, and

$$E(v(x)dx) := \int_{\mathbb{R}^d} \eta(v(x)) dx + \int_{\mathbb{R}^d} \Phi(x) v(x) dx.$$

Let $\mu_0 = v_0(x) dx, v_0 \in L^{\infty}(\mathbb{R}^d)$ such that $v_0 \log v_0 \in L^1(\mathbb{R}^d)$.

Theorem (R./Röckner23)

There is a unique solution $t \mapsto \mu_t = u(t,x)dx$ to (gPME) in $L^{\infty}([0,\infty] \times \mathbb{R}^d)$, and it satisfies the gradient flow

$$\frac{d}{dt}\mu_t = -\nabla_b^{\mathscr{P}} E(\mu_t), \quad t \geq 0$$

in \mathcal{P} , where E is as above. Moreover,

$$\nabla_b^{\mathscr{P}} E(\mu_t) = \frac{\nabla(u(t)^m)}{u(t)} - b(u(t))D \in L^2(\mathbb{R}^d, \mathbb{R}^d; \mu_t).$$

Marco Rehmeier 10 / 12

Further results and remarks

(i) If, in addition, the "balance condition"

$$\gamma_1 \Delta \Phi(x) - b_0 |\nabla \Phi(x)|^2 \le 0$$
, $dx - a.s.$,

holds, the energy E is a Lyapunov function for $t\mapsto \mu_t$, i.e. $E(\mu_t) \leq E(\mu_s), s \leq t$. Moreover, $u(t) \longrightarrow u_\infty$ in $L^1(\mathbb{R}^d)$ as $t\to\infty$, and u_∞ can explicitly be calculated from E.

- (ii) For $\beta(r) = \sigma r$, $\sigma \in (0, \infty)$, $b(r) = b_0 \in (0, \infty)$, E is the classical Boltzmann entropy function.
- (iii) $\nabla_b^{\mathscr{P}} E(\mu_t) \in \overline{\left\{b(u(t))\nabla\zeta\,|\,\zeta\in C_c^\infty(\mathbb{R}^d)
 ight)}$, where the closure is taken in $\left(L^2(\mathbb{R}^d,\mathbb{R}^d;\mu_t),\langle b(u(t))^{-1}\cdot,\cdot\rangle_{L^2(\mu_t)}\right).$
- (iv) Extensions of our results to more general equations

$$\partial_t u = \operatorname{div} (A(u)\nabla u) - \operatorname{div} (B(u)D(x)u),$$

where $A, B : \mathbb{R} \to \mathbb{R}^{d \times d}$ are matrix-valued seem possible.

Results: Nonlinear FP-equations as gradient flows on $\mathscr P$

Thank you for your attention!

Marco Rehmeier