Nonlinear Fokker-Planck equations as gradient flows on the space of probability measures

Marco Rehmeier
Scuola Normale Superiore Pisa

joint work with Michael Röckner (Bielefeld)
arXiv:2306.09530, 2023
19.10.2023

Table of Contents

(1) Preliminaries

2) Results: Nonlinear FP-equations as gradient flows on \mathscr{P}

For $m \geq 1$, consider Porous Media Equation on $\mathbb{R}^{d}, d \geq 1$

$$
\begin{equation*}
\partial_{t} u=\Delta\left(|u|^{m-1} u\right), u(0, \cdot)=\mu_{0}, \quad(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d} \tag{PME}
\end{equation*}
$$

For every $\mu_{0} \in \mathscr{P}=$ probability measures on \mathbb{R}^{d}, there is a distributional probability solution

$$
u: t \mapsto u(t), \quad u(t, x) d x \longrightarrow \mu_{0} \text { as } t \rightarrow 0
$$

i.e. $u(t, x) d x \in \mathscr{P}$ for all t.

Our question: Is $t \mapsto u(t, x) d x$ a gradient flow in the "manifold" \mathscr{P} ?
Previously: [Otto01] showed a formal gradient flow structure in the measure metric space \mathscr{P}_{2}.

Our answer: Yes, with a more rigorous, purely geometric approach, applicable to larger class of generalized PME

$$
\partial_{t} u=\Delta \beta(u)-\operatorname{div}(D(x) b(u) u)
$$

where $\beta: \mathbb{R} \rightarrow \mathbb{R}$ monotone, $D: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, b: \mathbb{R} \rightarrow \mathbb{R}$.

Geometry and gradient flows on \mathscr{P}

Gradient flows

For a Riemannian manifold M with gradient ∇^{M} and $E: M \rightarrow \mathbb{R}$, a gradient flow (wrt. E) is the equation for $x: t \mapsto M$

$$
\dot{x}_{t}=-\nabla^{M} E\left(x_{t}\right), \quad t \geq 0
$$

to be solved in the tangent bundle of M.
Hence: First need a Riemannian differential geometry on \mathscr{P}. It can be obtained by "lifting the geometry from \mathbb{R}^{d} to \mathscr{P} ":

Riemannian geometry on \mathscr{P}
Test functions $=$ finitely-based functions
$\mathscr{F} C_{b}^{2}:=\left\{F: \mathscr{P} \rightarrow \mathbb{R} \mid F(\mu)=f\left(\mu\left(h_{1}\right), \ldots, \mu\left(h_{n}\right)\right), n \in \mathbb{N}, h_{i} \in C_{c}^{2}, f \in C_{b}^{1}\left(\mathbb{R}^{n}\right)\right\}$
where $\mu(h)=\int_{\mathbb{R}^{d}} h d \mu$.

To obtain a tangent space $T_{v} \mathscr{P}$ at $v \in \mathscr{P}$, consider for $\psi \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R} ; v\right)$

$$
t \mapsto \mu_{t}^{v, \psi}:=v \circ(\mathrm{ld}+t \psi)^{-1} .
$$

Since for $F \in \mathscr{F} C_{b}^{2}, F: \mu \mapsto f\left(\mu\left(h_{1}\right), \ldots, \mu\left(h_{n}\right)\right)$, one has

$$
\operatorname{diff}_{v} F(\psi)=\frac{d}{d t} F\left(\mu_{t}^{v, \psi}\right)_{\mid t=0}=\left\langle\sum_{k=1}^{n} \partial_{k} f\left(v\left(h_{1}\right), \ldots, v\left(h_{n}\right)\right) \nabla h_{k}, \psi\right\rangle_{L^{2}(v)},
$$

one is led to consider

$$
T_{v} \mathscr{P}:=L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; v\right)
$$

and

$$
\nabla^{\mathscr{P}} F(v):=\sum_{k=1}^{n} \partial_{k} f\left(v\left(h_{1}\right), \ldots, v\left(h_{n}\right)\right) \nabla h_{k} .
$$

This geometry is not an arbitrary one, but the one obtained by the aforementioned "geometry lifting" from \mathbb{R}^{d} to \mathscr{P}. Also, $\nabla^{\mathscr{P}} E$ can be extended to larger classes of functions $E: \mathscr{P} \rightarrow \mathbb{R}$.

Table of Contents

(1) Preliminaries

(2) Results: Nonlinear FP-equations as gradient flows on \mathscr{P}

The Porous Media Equation

Let $\mu_{0} \in \mathscr{P}$ and let $u: t \mapsto u(t)$ be the unique probability solution to (PME) with initial datum μ_{0} in $\cap_{\delta>0} L^{\infty}\left((\delta, \infty) \times \mathbb{R}^{d}\right)$.
Theorem (R./Röckner23)
$\mu_{t}:=u(t, x) d x$ solves the gradient flow

$$
\frac{d}{d t} \mu_{t}=-\nabla^{\mathscr{P}} E\left(\mu_{t}\right), \quad t \geq 0
$$

in \mathscr{P}, with energy

$$
E: \mu=u(x) d x \mapsto \frac{1}{m-1} \int_{\mathbb{R}^{d}} u(x)^{m} d x
$$

and $\nabla^{\mathscr{P}} E\left(\mu_{t}\right)=\frac{\nabla\left(u(t)^{m}\right)}{u(t)} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{t}\right)$. If $d \geq 3$ and $\mu_{0} \in L^{\infty}$, then

$$
\int_{0}^{T}\left|\nabla^{\mathscr{P}} E\left(\mu_{t}\right)\right|_{T_{\mu_{t}} \mathscr{P}}^{2} d t<\infty, \quad \forall T>0 .
$$

Generalized Porous Media Equation

To treat

$$
\begin{equation*}
\partial_{t} u=\Delta \beta(u)-\operatorname{div}(D(x) b(u) u) \tag{gPME}
\end{equation*}
$$

change the geometry on \mathscr{P} : Instead of

$$
\left(T_{v} \mathscr{P},\langle\cdot, \cdot\rangle_{T_{v} \mathscr{P}}\right)=\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right),\langle\cdot, \cdot\rangle_{L^{2}(v)}\right)
$$

consider weighted metric tensor:

$$
\left(T_{v} \mathscr{P},\langle\cdot, \cdot\rangle_{T_{v} \mathscr{P}}\right)=\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right),\left\langle b(u)^{-1} \cdot, \cdot\right\rangle_{L^{2}(v)}\right)
$$

which leads to a different gradient $\nabla_{b}^{\mathscr{P}}$.

Assumptions on β, D, b
(i) $\beta \in C^{1}(\mathbb{R}), \beta(0)=0, \gamma \leq \beta^{\prime}(r) \leq \gamma_{1}, r \in \mathbb{R}$, for $0<\gamma<\gamma_{1}<\infty$.
(ii) $b \in C_{b}(\mathbb{R}) \cap C^{1}(\mathbb{R}), b \geq b_{0}>0$.
(iii) $\Phi \in C^{1}\left(\mathbb{R}^{d}\right), \nabla \phi \in C_{b}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), D=-\nabla \phi$.
(iv) ($\operatorname{div} D)^{-} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and $(\operatorname{div} D)^{+} \in\left(L^{2}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)\right)$.
(v) $\Phi \in W_{\text {loc }}^{2,1}\left(\mathbb{R}^{d}\right), \Phi \geq 1, \lim _{|x| \rightarrow \infty} \Phi(x)=+\infty$ and there exists $m \in[2, \infty)$ such that $\Phi^{-m} \in L^{1}\left(\mathbb{R}^{d}\right)$.

Let $\eta(r):=\int_{0}^{r} \int_{1}^{s} \frac{\beta^{\prime}(w)}{w b(w)} d w d s, r \in \mathbb{R}_{+}$, and

$$
E(v(x) d x):=\int_{\mathbb{R}^{d}} \eta(v(x)) d x+\int_{\mathbb{R}^{d}} \Phi(x) v(x) d x
$$

Let $\mu_{0}=v_{0}(x) d x, v_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ such that $v_{0} \log v_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$.

Theorem (R./Röckner23)

There is a unique solution $t \mapsto \mu_{t}=u(t, x) d x$ to (gPME) in $L^{\infty}\left([0, \infty] \times \mathbb{R}^{d}\right)$, and it satisfies the gradient flow

$$
\frac{d}{d t} \mu_{t}=-\nabla_{b}^{\mathscr{P}} E\left(\mu_{t}\right), \quad t \geq 0
$$

in \mathscr{P}, where E is as above. Moreover,

$$
\nabla_{b}^{\mathscr{P}} E\left(\mu_{t}\right)=\frac{\nabla\left(u(t)^{m}\right)}{u(t)}-b(u(t)) D \in L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{t}\right)
$$

Further results and remarks

(i) If, in addition, the " balance condition"

$$
\gamma_{1} \Delta \Phi(x)-b_{0}|\nabla \Phi(x)|^{2} \leq 0, \quad d x-\text { a.s. },
$$

holds, the energy E is a Lyapunov function for $t \mapsto \mu_{t}$, i.e.
$E\left(\mu_{t}\right) \leq E\left(\mu_{s}\right), s \leq t$. Moreover, $u(t) \longrightarrow u_{\infty}$ in $L^{1}\left(\mathbb{R}^{d}\right)$ as $t \rightarrow \infty$, and u_{∞} can explicitly be calculated from E.
(ii) For $\beta(r)=\sigma r, \sigma \in(0, \infty), b(r)=b_{0} \in(0, \infty), E$ is the classical Boltzmann entropy function.
(iii) $\nabla_{b}^{\mathscr{P}} E\left(\mu_{t}\right) \in \overline{\left.\left\{b(u(t)) \nabla \zeta \mid \zeta \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right)\right\}}$, where the closure is taken in

$$
\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d} ; \mu_{t}\right),\left\langle b(u(t))^{-1} \cdot, \cdot\right\rangle_{L^{2}\left(\mu_{t}\right)}\right)
$$

(iv) Extensions of our results to more general equations

$$
\partial_{t} u=\operatorname{div}(A(u) \nabla u)-\operatorname{div}(B(u) D(x) u)
$$

where $A, B: \mathbb{R} \rightarrow \mathbb{R}^{d \times d}$ are matrix-valued seem possible.

Thank you for your attention!

