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For m > 1, consider Porous Media Equation on RY, d > 1
dru=A(Ju/™ ), u(0,")=uo, (t,x)€ER, xR, (PME)

For every Lig € & = probability measures on RY, there is a distributional
probability solution

u:t u(t), u(t,x)dx — Hg ast—0,
i.e. u(t,x)dx € & for all t.

Our question: Is t — u(t,x)dx a gradient flow in the "manifold” &7

Previously: [Otto01] showed a formal gradient flow structure in the
measure metric space Y.

Our answer: Yes, with a more rigorous, purely geometric approach,
applicable to larger class of generalized PME

dru = APB(u) —div(D(x)b(u)u),

where B : R — R monotone, D :RY - R?, b:R —R.
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Geometry and gradient flows on &

Gradient flows

For a Riemannian manifold M with gradient VM and E:M — R, a
gradient flow (wrt. E) is the equation for x : t — M

xt=—-VME(x;), t>0,

to be solved in the tangent bundle of M.
Hence: First need a Riemannian differential geometry on &. It can be
obtained by " lifting the geometry from RY to &2":

Riemannian geometry on &
Test functions = finitely-based functions

FC={F: P> R|F(u)=Ff(u(hs),...,u(hn)),neN,h; € C2,f € CL(R")}
where p(h) = [pa hdu.



.
To obtain a tangent space T, at v € &, consider for y € [?(R?,R; V)
tu. Y i =vo(ld+ty)™?
Since for F € ZC2, F: s f(u(h1),...,1(hn)), one has

) d !
diffy F(y) = EF(H:’W)V:O =() 9kf(V(h1),'--,V(hn))th,ll/>Lz(v)7
k=1

one is led to consider
T,7 = [*(RY,R; V)

and
VZF(v Z okf(v(h1),...,v(hn))Vh.

This geometry is not an arbitrary one, but the one obtained by the
aforementioned " geometry lifting” from R? to 2. Also, VZE can be
extended to larger classes of functions E : & — R.
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.
The Porous Media Equation

Let o € & and let u: t+— u(t) be the unique probability solution to
(PME) with initial datum Lo in Ng=oL™((8,%) x RY).

U: := u(t,x)dx solves the gradient flow

d 12
—u,=-V7E t>0
dt/»lt (,Ut), =

in &, with energy

and V7 E(uy) = Y7 € 12(RY,RY; e). If d >3 and po € L™, then

T
/0 V7 E(ue)|%, o dt <o, WT >0,



.
Generalized Porous Media Equation

To treat
dru = AP(u)—div (D(x)b(u)u), (sPME)
change the geometry on &: Instead of
(Tngv <'7 ‘>Tv9") - (L2(Rd7Rd)ﬂ <‘7 '>L2(v))7
consider weighted metric tensor:
(Tv337 <'7 > Tvy) = (L2(Rd7Rd)7 <b(u)71'7 '>L2(v))7

which leads to a different gradient sz.



Assumptions on B,D, b

(i) Be CY(R), B(0)=0, y<P'(r)<m, reR, for 0<y<mn <eo.
(i) b€ C(R)NCHR),b> by > 0.
(i) ® € CY(RY), Vo € Go(RY,RY), D= —-V.
(iv) (divD)~ € L*(RY) and (divD)* € (L2(R9) + L=(R)).
(v) @€ WI(Q)"CI(Rd), b >1, J;an¢(x) = +oo0 and there exists m € [2,)

such that @~ ¢ [1(RY).
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Let n(r):= [y fl Wb dwds reRy, and

x)dx) == /Rdn(v(x))dX—F/Rd d(x) v(x)dx

Let o = vo(x)dx,vp € L*(RY) such that vglogvg € L}(RY).

There is a unique solution t — 1y = u(t,x)dx to (gPME) in
L=([0,%0] x RY), and it satisfies the gradient flow

d

= ~VYE(ue), t>0

in &, where E is as above. Moreover,

V(u(t)™)

O b(u(t))D e L2(R?,RY; ;).

Vi E(ue) =




Further results and remarks

(i) If, in addition, the "balance condition”
1 AD(x) — b|VP(x)|> <0, dx—as.,

holds, the energy E is a Lyapunov function for t — i, i.e.
E(u:) < E(us), s < t. Moreover, u(t) — ue in LY(RY) as t — oo,
and u. can explicitly be calculated from E.

(ii) For B(r)=or, 6 €(0,), b(r) = by € (0,0), E is the classical
Boltzmann entropy function.

(iii) VZE(ue) € {b(u(t))VE|E € C=(R?))}, where the closure is taken in

(L2(RYRE pe), (b(u(t) ™) 2 -
(iv) Extensions of our results to more general equations

dru = div (A(u)Vu) —div (B(u)D(x)u),

where A, B : R — R9%? are matrix-valued seem possible.



Thank you for your attention!
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