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N
FPEs, SDEs, Markov processes: Linear case

For a = (ajj)ij<d : Ry x R — RY*9 b= (b;)i<qg : Ry x R? — R Borel
measurable, consider linear Fokker-Planck equation (FPE)

at.ut:ai_?(aij(t7x)ut)_ai(bi(t7x)ut)7 t257 .uS: C € L@7 (EFPE)
P = prob. measures on Z(RY).

Corresponding SDE, with %O‘GT =a, is

dX; = b(t, X;)dt + 6(t,X:)dB;, t>s, Xs~C. (SDE)
Recall:
e X solution to (SDE) = (lt)e>s := (Zx,)t>s solves ((FPE).
e (Ut)e>s solution to ((FPE) = 3 solution X to (SDE) with
"%Xt - ‘ut.

e If (¢FPE) is well-posed, so is (SDE), and unique solution laws of the

latter are a Markov process with one-dim. marginals equal to
(¢FPE)-solutions.



This connection to Markov processes fails, if the FPE is nonlinear, i.e.
Oette = 5 (ajj(t, e, X)1e) — 0 (bi(t, e, X)1e), t>s, ps=¢, (nlFPE)

since the corresponding stochastic equation is distribution-dependent:
dX; = b(t, Zx,, Xe)dt +o(t, Zx,, X¢)dBy, t>s, Xs~{, (DDSDE)

and even in well-posedness cases, solutions to DDSDEs do NOT satisfy
the usual Markov property.

To build a theory as in the linear case, in [R./Rockner22] we introduced
and studied a notion of nonlinear Markov processes, and proved:

Given a semigroup of solutions to a nIFPE, there is a nonlinear
Markov process, consisting of solution laws to the DDSDE with
one-dim. marginals given by the semigroup.

This gives a probabilistic representation of nlFPE-solutions as marginals of
nonlinear Markov processes.
Note: We do NOT need uniqueness of the nIFPE.



.
Nemytskii-type FPEs = interesting class of PDEs

Consider local, singular dependence of coefficients on measure:

a(t, 1, x) :5<t,ccjjl;:(x),x), b(t,p,x) = E(r,i’!’;(x),x>,

for 5: Ry xRxRY - R9? h:R, xRxRY— R
Rewritting the FPE for densities t +— u; = % gives a nonlinear PDE:
du; = 8,-12-(3,-1'(1', ug, x)up) — 0i(bi(t,ug, x)ur), t>s,  u(x)dx 1o, .

Interesting PDEs are of this type: e.g. Burgers, classical and generalized
PME, 2D vorticity Navier-Stokes. For all of these:

There is a nonlinear Markov process with one-dim. marginals equal to
solutions to this equation, see [R./Réckner22], [BarbuRécknerZhang23].

6/21



Next goals:

e Develop theory of nonlinear Markov processes and apply it to
nonlinear PDEs and DDSDE to prove new results.

e Solve new classes of nlFPE and link them to nonlinear Markov
processes. This we do today!

Good method to construct solution semigroups for Nemytskii-type FPE:
Crandall-Liggett nonlinear semigroup approach in L}(R9 R;dx). This way,
[BarbuRadckner21] solved

deult) = AB(u(t)) —div (D(x)b(u(t))u(t))

for curves of probability densities t — u(t). Then: Connection to DDSDE,
nonlinear Markov processes...
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Construction of solution semigroups

Our goal: Solve
dru=APB(u) =V -VB(u)—divy(D(x)b(u)u) (FPp)
by semigroup method in L}(RY; pdx), where
p :R? = R [1-(probability) density, ® = —logp (i.e. p=e ®),

divp = dual of V in L2(RY; pdx).

)

Example: p(x)=e : = LI (Ornstein-Uhlenbeck processes, see

2
later).

¥
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Construction of solution semigroups

Assume the following hypothesis.
(H1) 0 < ® € C? is convex with limy_,. ®(x) = oo, and VO € L}(p).
(H2) B € C%(R), B/(r) >0 for r £0, and B(0) = 0.
(H3) b>0, be Cp(R).
(H4) D € [=(R?,RY), div,D € L , (divo,D)~ € L™,
Then, for each ug € L}(pdx) N L™, there is a mild and distributional
solution u = u(up) € C([0, T]; LX(pdx)) with

1
lu(t)]w < exp (|(divpD)™ +|D||2t)|uole, V¥t >0.
Moreover, S(t) : ug +— u(t), is a semigroup of L*(p)-contractions, i.e.

S(t+s)uo = 5(t)5(s)uo, S(0) = /d,
|5(t)u0 —S(t)VO|L1(p) < |UO — VO’Ll(p)'

If ug(x)p(x) is a probability density, so is each u(t)p(x).

11/21



Construction of solution semigroups

If in addition B is Lipschitz, everything holds for up € L*(p) instead of
ug € LY(p)NL>.

(i) Let A: D(A) C X — X be a nonlinear operator in a Banach space X.
A mild solution to

%u(t) — A(u(t)), wu(0)=uo, t>0,

is u€ C(Ry,X) such that u=limX_qup locally uniformly in time,

up(0) := uf) == up,
up(t) := uf,Vt € ((i —1)h,ih],i €N,
uj, € D(A), uj+ hAup, = uj*.

(i) A mild solution to (FP,) is a mild solution in X = L}(pdx) with

Ao(u) = —AB(u) — V- VB(u) — divy (D(x)b(u)u).
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Construction of solution semigroups

Idea of proof: Apply Crandall-Liggett theorem, i.e.

A m—accretive = Yug € (A)X: Jlmild sol. to %u(t) =—Au(t),u(0) = up,
forming a semigroup of |- |x-contractions.

A is m—accretive, if
R(ld+AA) = X,VA >0 and |(Id+ AA) "1 — (Id+ AA) g|x < |f — g|x-

For A as above, one can prove the full-range-condition in

(X,|-|x) = (LY (pdx)N L=, |- |11(p)), and there exists an m-accretive
restriction A C Ag. Then, by small relaxations of the original C.—L.-proof
the existence claim follows.

Price to pay: Since range- and contraction property only in L1(pdx)NL>,
cannot conclude uniqueness of the mild solution, only uniqueness among
solutions approximated by step functions with values in L!(pdx)NL>.
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Construction of solution semigroups

Solving
vFAAv =f, felYpdx)NL”

similar to [BarbuRdckner21]: Approximate A by smooth A, € >0, and use
symmetry of Lv := Av—V®.-Vv in L?(pdx),

i.e. (L,L%(pdx)) replaces (A, L?(dx)) in [BarbuRdckner21].
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Superposition principle: For any weakly continuous distributional
probability density solution t — u; to the Nemytskii-type nlFPE

dutzé’g(a,-j(t, ur(x),x)ur) — 9;(bi(t, us(x),x)ut), t>s, (1)
there exists a weak solution X to
dXt = b(t, Ut(Xt),Xt)dt+ G(t7 Ut(Xt),Xt)dBt, t>s

with Zx, = us(x)dx.
Note:
dru=AB(u)— V- VB(u)—divy(D(x)b(u)u)

appears not of the above type. But: due to symmetry of A —V® in
L?(pdx): Distributional formulation (i.e. integrating with test fct., putting
derivatives to test fct.) is of same type as (1).
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Hence: Superposition principle applies: For any weakly continuous solution
t — u(t,x) such that u(t,x)p(x)dx € £ to

dru = AB(u) =V -VB(u)—divy(D(x)b(u)u),

there exists a weak solution X to

v D H(X: VL, Xe)p™ t
dX; = D(Xt)b(v(t,Xt)pl(Xt))WVQ(Xf)}dt+\/2WdB“

Lx, = v(t,x)dx = u(t,x)p(x)dx.
= We can solve this SDE for initial data

P, = u(0,x)p(x)dx, u(0,-) € L*(pdx)NL™.

This SDE is a model for nonlinear generalized perturbed
Ornstein—Uhlenbeck processes. Indeed: For B =1d, ¢ = g and D =0, it
reduces to

dX; = — Xidt + dBs.
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Nonlinear Markov property

We want to show: The family of solution path laws P, ug € Ll(pdx)ﬁ L=,
to the above SDE with initial datum uppdx € & and one-dim. marginals

Py om; L = S(t)uy, t>0,
is a nonlinear Markov process, i.e. satisfies the following definition. Set
F, = 0(ns,0 <s<r) C B(C(R,RY)).
{P,,,uo € LY(pdx) N L*} is a nonlinear Markov process, if YA € B(R?),

0<r<tu€Mpdx)NL”

Py (e € AlF ) () = Psryuo (Te—r € Al = () Py —as.
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Nonlinear Markov property

We can apply the following result:

If Z9 C & and (5(t))e=0,5(t) : Po — Po, is a semigroup of
distributional solutions to the FPE

8i.“,ut‘ = 83 (aij(tnutax);ut) - ai(bi(t>“tax)ut)7
and if t — S(t)uo, Ho € Py, is the unique solution to the linearized FPE
0:Vy = (93 (a,'j(t,S(t)[.Lo,X)Vt) — 8,-(b,-(t, S(t)‘Lto,X)Vt),Vo = S(O)LL(),

then the superposition solutions {Py, }u,c 2, to the corresponding DDSDE
are a nonlinear Markov process with marginals S(t)uo, t > 0, Uy € Y.

We can prove the linearized uniqueness claim, and hence obtain:

The solution path laws {]P’L,O}UOal(de)mLm to the nl-gen-per-OU-equation,
obtained as superposition solutions of the semigroup solution to the
weighted FPE, are a nonlinear Markov process.

20 /21



Nonlinear Markov property

Thank you for your attention!
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