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1 Linear Fokker—Planck equations

1.1 Probabilistic basics and motivation

Set Ry := [0,00), N := {1,2,3,...} and Ny := {0} UN. The distribution of a
random map X is denoted by Lx.

We begin by repeating the definition of solutions to the stochastic differential
equations on R¢

dX: = b(t, X¢)dt + o(t, X¢)dBy, (SDE)
where the drift- and diffusion-coefficients
b:Ry xRY R4, Ry x RY — RIX4
are assumed to be product-measurable w.r.t. the usual Borel o-algebras.

Definition 1.1.1. (i) A (weak) solution to is a triple consisting of a filtered
probability space (2, F, (Ft)i>0,P), a d-dimensional standard (F;)-Brownian
motion B and an (F;)-adapted R%valued stochastic process X = (Xt)t>0 on
Q such that

T
]E{/ |b(t, X¢)| + |a(t,Xt)|2dt} <oo, VI'>0
0
and P-a.s.

t t
X = Xo +/ b(s, Xs)ds +/ o(s,Xs)dBs, Vt>O0.
0 0

(ii) If £x, = p, the weak solution is said to have initial value p.
We often simply say "X is the weak solution”.

To consider an initial time s > 0, replace 0 in the above definition by s. One then
says X has initial condition (s, ).

The law of a stochastic process X with continuous paths on a probability space
(Q,F,P) is its distribution on C,R? := C(R,,R9), i.e. the image measure £x =
PoX !of X:0Q— CL

Remark 1.1.2. (i) More generally, for any m € N, one may consider o with values
in R>™ and m-dimensional Brownian motions. We will, however, restrict
to the case o € R4*?,
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(i) The law of a weak solution solves the martingale problem associated with b
and %JO’T and, vice versa, for every solution P of the latter, there is a weak
solution to with law P. Thus, we will often identify weak solutions,
their laws and solutions to the associated martingale pmblemﬂ

From a probabilistic point of view, the following proposition is one main motiva-
tion to study Fokker—Planck equations. Set a = (a;;)i,j<d, aij = 5(00’)i;. a(t,z)
is symmetric and nonnegative definite for all (t,7) € Ry x R%

Proposition 1.1.3. Let X be a weak solution to (SDE|). Then the probability measure-
valued weakly continuous curve of one-dimensional time marginals

t’—)Lthi,LLt, t>0

satisfies

[ e@dn@ = [ c@aur [ [ as.00e@ b 000w duds

for allt > 0 and ¢ € C(R?) (the latter denotes the space of smooth real-valued
functions on R with compact support).

Proof. Exercise 1.1. O

The distributional formulation of the previous equality is
Oepe = 07 (aijpe) — 0i (bipue),

which, as we shall see, is a Fokker—Planck equation for Borel (probability) measures
on R?. If
Lx, = oi(x)dx

and o: R, x RY — R and aij,b; are sufficiently regular, then
dvor = 075 (aijor) — Oi(bio)

holds pointwise, i.e. in the classical, strong sense.

Hence: Marginals of SDE-solution solve a deterministic PDE for measures!

Spaces of measures, vague and weak topology For a topological space X, Ml‘f (X)
denotes the set of nonnegative finite Borel measures on X. We write M, := M, (R9)
when no confusion about the dimension d can occur. Denote by C.(X) and Cy(X)
the spaces of continuous functions g : X — R which are compactly supported and
bounded, respectively. Let now X be a metric space.

Definition 1.1.4. (i) The vague, respectively weak topology on Mz' (X) is the ini-
tial topology of the maps p — fodu for all f € C.(X), respectively
f € Cy(X), i.e. the coarsest topology T on M; (X) such that each of these
maps is continuous between (M; (X),7) and R.

1We briefly review the definition and basic theory of martingale problems later on.
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ii wnen converges vaguely (weakly) to pn in M (X), if it converges in the
Hn)ne g guety Y K b ) g

vague (weak) topology, i.e. if fodun RimaaN fodu for all f € C.(X)
(f € Co(X)).

Remark 1.1.5. (i) p, —— p weakly = w(X) = pn(X) for all but finitely
many n € N.

(ii) Wrong for vague convergence: X =R, u, = 0, = 0 (the trivial measure),
then pn, —5 1 vaguely, j,(R) =1 for alln € N and p(R) = 0.

(iii) Let X =R®. The set of subprobability measures

8P =M N {p: uRY < 1}

/

is the positive hemisphere of the unit ball in C.(R%) (the closure of C.(R?)
w.r.t. the topology of uniform convergence), which is weak-x-sequentially com-
pact. In particular: Every sequence of subprobability measures has a vaguely
convergent subsequence. This is not true when “weakly” replaces "vaguely”.

(iv) M and P (the set of Borel probability measures on R?) with the weak topology
and 8P with the vague topology are Polish.

1.2 Definition, existence, uniqueness
Let d € N and consider Borel coefficients

b= (bi)igda a = (aij)i,jgd,c, bi,aij, C: R+ X Rd — R.

We always assume that a(t, x) is symmetric nonnegative definite for all (¢, ). The
class of Fokker—Planck equation (FPE) we are going to study is

Oy = 0 (agjp) — 95 (bipt) + cp. (FPE)

These are linear equations, since the coefficients do not depend on the solution.
Setting

Lape: 0+ Lapep(t,z) = aij(t, 2)05(t, 2)p(x) + bi(t, 2)0ip(x) + c(t, x)p(x),
a compact way of writing is
Opp = LZZ,b,cm
where L* denotes the formal dual of an operator L.

Definition 1.2.1. A locally finite Borel measure p on (0,00) x R? satisfies (FPE)) if
aij, bi,c € L ((0,00) x R%; 1) and for every ¢ € C2°((0,00) x R?) we have

loc

/ v + Lapopdpt = 0.
(0,00) xR4
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We always restrict to nonnegative measures p given by a family of nonnegative
locally finite Borel measures (1¢)¢>0 on R? via

/(o,oo)de felp = /OOO (/]Rd fdﬂt)dt' (1.2.1)

In order for the integral on the right hand-side to make sense, the measures (p)>0
need to be a Borel curve, i.e. t — p;(A) has to be Borel for every A € B(R?).

We call u a (sub-)probability solution or a solution with constant mass, if every
u¢ is a (sub-)probability measure or if u;(R?) = us(R?) for all £, s > 0, respectively.
Depending on context, these conditions may be understood for dt-a.e. t > 0.

Remark 1.2.2. (i) If (1t)t>0 solves (FPE) and (fit)t>o is a Borel curve of locally
finite Borel measures such that py = fiy for dt-a.a. t > 0, then (fit)i>o0 also
satisfies . Hence solutions are only determined dt-a.s., and a natural
question is whether the dt-equivalence class of a solution contains a vaguely
or weakly continuous representative. As we shall see, this is true under very
broad assumptions.

Definition 1.2.3. A solution (u)t>o to (FPE) has initial value v € My, if for every
¢ € C°(R?) there is a set of full dt-measure O, C (0, 00) such that

/d pdv = lim pdpg. (1.2.2)
R

t%O,tGOw Rd

In this case, one sets po := v and considers (u)>o instead of (f4);>0. The pair
(FPE)+(1.2.2)) is the Cauchy problem associated with the FPE.

Clearly, the initial value is unique (Exercise 1.2). Equation (1.2.2)) does not imply

t—0 . .
vague convergence iy —— v, but it does, if OF, = (0 for all .

For the case pu = (ut)t>0, the following definition of solution to (FPE) is very
useful.

Definition 1.2.4. A Borel curve of locally finite Borel measures (jit)¢>0 solves (FPE)
with initial value v, if a;;, b;, ¢ € L ((O7 ) x R%; utdt) and for every ¢ € C°(R%)

loc

there is a set of full dt-measure J, C (0, 00) such that for all t € J,

t
/ wdug :/ pdv+ lim / / Lop,cpdpsds. (1.2.3)
R4 R4 70+ + JRA

Lemma 1.2.5. (i) If a;;,b;,c € L ([0, 00) X Rd;utdt), then

loc

t t
lim // La7bycgod,usds:// Lopcpdusds. (1.2.4)
=0+ ) Jre 0o Jre

In this case: Jg = 0 for all ¢ if and only if t — u; is vaguely continuous on
[0, 00).
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(i) If t — py is vaguely continuous and the first assumption in (i) is strengthened
to a;j,b;,c € Ll([O,T] x R pydt) for all T > 0, then (u:)¢=o0 has constant
mass. Moreover, in this case 1' holds for all ¢ € CZ(R?), the space of
real-valued bounded continuous functions on R* with uniformly bounded first-
and second-order derivatives.

Proof. (i) The first assertion holds, since the compact support of ¢ implies [t —
Jza Lap.ep dps] € Lig ([0,00); dt), which yields the claim. The second asser-

tion follows from the continuity of the map t — fot f(t,z) dus(z)dt for every
f such that [t — [ f(t,-)du] € L, ([0, 00); dt).

(ii) The first part is Exercise 1.3., the second part follows by a standard approxi-
mation.

O

The proof of the following result is the content of Exercise 1.4 and can be found
on p.243 in [§].

Proposition 1.2.6. 1 given by (1.2.1) satisfies (FPE]) with initial value v in the sense
of Definition|1.2.1 and[1.2.5 if and only if (p:)i>0 satisfies Definition m

We may now reformulate Proposition by saying that the one-dimensional
time marginals p; := Lx, of a weak solution X to [SDE| are a weakly continuous
probability solution to the Fokker—Planck equation [FPE| with ¢ = 0, a = %UO’T,
b, and with initial value £x, (which may be prescribed on the level of the SDE).

Definition [[.1.1] entails

/ / laij(t, )| + |b;(t, x)|dpe(x)dt = {/ lai; (t, Xo)| + |bi(t, X¢)|dt| < oo

for all T' > 0 and i, j < d, i.e. all assertions of Lemma [T.2.5] hold.
This relation between SDEs and FPEs is one main reason why we will mostly be
interested in the case ¢ = 0 and in weakly continuous probability solutions.

Remark 1.2.7. Several generalizations of and related equations to have been
studied in the literature, for instance equations for measures on more general state
spaces, e.g. on open subsets U C R%, infinite-dimensional spaces and manifolds. A
related class of equations are elliptic FPEs

L:,b,cn =0.

Depending on time, we might briefly touch these aspects during the course of the
lecture. Moreover, we will study nonlinear Fokker—Planck equations. The term
nonlinear refers to coefficients that depend on the solution p itself.

Equation (FPE), Definitions |1.2.1j1.2.3]]1.2.4] and all previous assertions can be
generalized to an initial time s > 0 in the obvious way. In this case, the initial
condition is the pair (s,v).
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1.2.1 An existence result

There are many results on the existence of solutions to the Cauchy problem +.
Here, we present one result (Proposition below) whose proof proceeds via
standard arguments for the construction of solutions to PDEs with irregular coeffi-
cients: First, the coefficients and initial datum are approximated by regular ones,

for which existence of solutions is known. Then, one proves uniform estimates of

the corresponding solutions in order to extract a converging subsequence. Finally,

one shows that its limit solves the original equation. We restrict to a finite time
interval [0,77], i.e. we consider Borel coefficients a;;,b;,c : [0,T] x R? — R. The

case T' = oo can be obtained by a simple variation. We need the following two basic
results. For their proofs, see [8, Ch.6.3., 6.6.].

Lemma 1.2.8. Assume there are numbers 0 < m < M such that mId < a(t,z) <
MId for all (t,z) € [0,T] x RL.  Moreover, let a;j, its first- and second-order
derivatives, b; and its first-order derivatives, and ¢ be bounded and continuous on
(0,7) x R? and Holder continuous in x uniformly in t of degree o € (0,1). Finally,
suppose for some C > 0

laij(t,2) — ai;(s,y)| < C(lz —y|* + |t = s|%), V(t,x) € (0,T) x R".

Then for every probability density oo € Cy(R?) there is a subprobability solution
(1t)eepo,my to (FPE) with initial datum v = godx such that p, = oidx, [(t,x) —
0i(x)] € C12((0,T) x RY) N C([0,T) x RY), and for dt-a.e. t € (0,T)

¢
pe(RY) < v(RY) +/ /d cdpdt.
o Jr

For the next two results, we denote by U C R? an arbitrary ball and by .J an
arbitrary set of type [to, T — to],to > 0.

Lemma 1.2.9. Let u = (pe)ic(o,r) be a solution to (FPE), and assume on every
J XU a is bounded, Hélder-continuous in x uniformly int and there is m(J,U) >0
such that m(J,U)1d < a(t,x) for all (t,z) € J x U.

d+3

Then py = oi(x)dz, 0 € LIZ((0,T) x RY), and for every J x U and every

loc

neighborhood W of J x U with compact closure in (0,T) x R? one has

e
|Q|L%(J><U) <G

where C depends on d,infy deta, lalpeewy, [0lLrowip), leloiowiwy, S, U, W oand

The main result of this section is the following proposition.

Proposition 1.2.10. Suppose ¢ < 0, ai;,b; and ¢ are bounded on each [0,T] x U.
Moreover, assume that for every U there are numbers 0 < m(U) < M(U) such that

m(U)1d < a(t,z) < M(U)1d, V(t,z) € [0,T] x U.
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Then, for every v € P, there is a subprobability solution p = (j1¢)iecjo,1) to (FPE)
with initial datum v such that ¢ € L'((0,T) x RY; yydt) and for dt-a.e. t € (0,T)

d 14 d t C tat. /R
n® < v+ [ e (1.25)

The result can easily be extended to the case ¢ < ¢q for ¢ > 0.

Proof. We divide the proof into five steps.
1. Define a;;(t,z) = &;;,bi(t,z) = 0 = c(t,x) for (t,x) € [0,T]° x RY, let w :
R4+ — R satisfy

w e Cé’o(RdH), w >0, / w(t,z)dxdt =1, w(t,xz) =0 for |z| > 1,
R’H'l

set we(t, ) := e 4 tw(we™!, te™!) for € > 0, and, for n € N,

=bixwi, "i=crwi.

1
n

no.__ .. —15. . n
ajj = aig*wi +n" i, b

3=

For each n and [, the functions aj;,b;",c" and its derivatives up to order [ are
uniformly bounded on R+, Moreover, a™(t,r) > n~'Id for all (t,r) € RI+L.
Each of the sequences (a};)nen, (b )nen, (¢")nen converges in LP([0,T] x Uy) for
each p > 1 and k € N, where Uy denotes the ball centered at the origin of radius k,
with limits a5, b; and c, respectively.

Let v, = nndx, 0, € C°(R?), be a sequence of probability measures converging
weakly to v, and consider the Cauchy problems

By Lemma for each n € N, there is a subprobability solution (4} ).cf0,r) to
(T.2.6)) such that [(t,z) — o (x)] € C12((0,T) x R)NC([0,T) x R?), and for dt-a.e.
te(0,T)

¢
(R < v (RY) —|—/ /]Rd c"dulds. (1.2.7)
0

In particular, (1.2.4]) holds and (|1.2.3)) is satisfied for every t € (0, 7).

2. By definition of a™, we have, independently of n,
a™(t,x) = mey11d, V(t,x) € [0,T] x Uy,

where mgy; = m(Ugy1) is the number from the hypotheses of the proposition
corresponding to the ball Ugy,. In addition, for any k£ and all sufficiently large n
we have

|agi| Lo (0.1 Uk) < lalLoe (0, 71x Uk 10) + 1o
b7 | Lo (0,11 xUw) < b3l Loo (0,77 x U s1)s 1€ | Loe(j0,77xU) < 1€l Lo ([0,1)x Uk 11)-
Lemma [T:2.9] implies for every k > 2

/ o (z) 72 dadt < C, (1.2.8)
[Tk}_l,T(lfk_l)] ><ka1
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where C), depends on my.1 and the right hand-sides of the previous three estimates,
but not on n. Since L%([kal,T(l — k1)) x Ug—1) is reflexive, the sequence
(0™)nen contains, for every k > 2, a weakly converging subsequence in the latter
space. By the standard diagonal argument, we may consider a subsequence, still
denoted (0™)nen, which weakly converges in L2 ([T, T(1 — k=1)] X Up—1) for
every k > 2, to a limit p. Hence dt-a.e. u7, along the same subsequence, converges
L%S’(Uk)—weakly for every k to py = o(t, x)dx, hence in particular vaguely.

3. Let ¢ € C°(R?%). There is C(p) > 0, independent of n, such that for all
0<s<tLT

‘/ wdu?—/ @ dpuy
R4 Rd

Consequently, for fixed ¢ the functions

¢
:‘// Lon pn enpdprdr| < Clp)|t —s|. (1.2.9)
s JR4

0.1)3t [ pdi =0, neN,

converge dt-a.s. to f(t) := [pu @ dps. Moreover, (f™)nen is uniformly bounded and
equicontinuous, hence the Arzeld-Ascoli theorem implies that every subsequence of
(f™)nen contains a locally uniformly on [0,T) converging subsubsequence.

So, any two subsubsequence limits coincide dt-a.s., hence pointwise (since they
are continuous) on [0,7"). Consequently, (f™)nen converges locally uniformly to a
limit equal to f dt-a.s. The dt-exceptional set depends on ¢ and is denoted by T(¢).

4. We are now going to prove that u = pdt, puy = o(t, z)dz, is a solution as in
the assertion. For ¢ € C°(R?), we have L, . € L=((0,T) x Uy),

Sup [Lan pn en 0| Lo (0,1 xUy) < Ck,
n
and Lgn pn en SEmEN Lap.ep in LP((0,T) x RY) for every p > 1. Let t € T(¢)¢, i.e.

/«pdulbw—%/ ¢ o(t,z)dz,
R4 R4

and let 0 < s < t. Then

t
‘/ <pdu?—/ sovn—/ / Lan pn e dpiydr
R4 R4 s Rd
=‘/ wdu?—/ @ dvy
R4 R4

where C(p) is as in ([1.2.9)). Since

t t
lim/ / Lon pn enp dprdr = / / Loy o(r,x) dzdr,
n Js JRd s JRd

letting first n — oo and then s — 0 in ((1.2.10)) yields

t
/ po(t,z)dr = / pdv+ / / Lopcp o(r, x) dedr.
R R 0 JRra

(1.2.10)

< Clp)s,
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Therefore, 11 = (ut)iejo,r) = (o(t, x)dx)icpo,7) is a solution to the Cauchy problem

(FPE)+(1.2.2) with initial datum v.

5. It remains to prove the additional properties of u claimed in the assertion of
the proposition. Since each v, is a probability measure and due to (|1.2.7)), we find,
for every ¢ € C°(R%) with 0 < ¢ < 1 and t € (0,7),

¢
/gbduf—// ¢pen dplds < 1. (1.2.11)
R? 0 JRe

Consider ¢y € CX(R?), 0 < ¢n < 1 such that ¢y = 1 on Uy, and let t €
My T(6n), i

/Rd oy dplt 2= /R én o(t,x)dz, VYN €N.

Considering such ¢y and ¢ in (1.2.11) and letting n — oo yields

t
/ ono(t,z)dx —/ oncu(s, x)dxds < 1.
Rd 0 Jra

Finally, letting N — oo, by Fatou’s lemma we conclude, for dt-a.e. ¢t € (0,T),

t
/ o(t,x)dx — / / co(s,z)dzds < 1 = v(R?).
Rd 0 JR4

This proves all remaining assertions. 0

1.2.2 Uniqueness of solutions

Now we present some classical uniqueness results and an example of an ill-posed
FPE with smooth coefficients. For the rather long proofs of these results, we refer
to Chapter 9 of [8] and to the exercises. Let a;;,b;,c : [0,T] x RY — R be Borel
maps and a = (a;5)i,j< Symmetric nonnegative definite for all (¢, ).

First, assume ¢ = 0. The following result is classical.

Proposition 1.2.11. Assume a,b satisfy fOT |alcz(ray +[bloz(raydt < co. Then (FPE)
has a unique weakly continuous solution (it)icfo,r) with constant mass for every

initial datum v € M;‘ In particular, for v € P, there is a unique weakly continuous
probability solution with initial datum v.

Now denote, for a subprobability measure v, by 8P, the set of solutions p =
(#t)tepo,m) to (FPE) with initial value v such that

ce LYN(0,T) x R% yydt), be L*((0,T) x U; pedt) ¥ balls U C RY,

and such that holds for dt-a.e. t € (0,T). In particular, for u € 8P, dt-a.e.
14 is a subprobability measure. The assumption on b is fulfilled, if b is bounded on
each (0,7) x U.

We assume ¢ < 0, and we introduce the following assumptions on a.
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(H1) For each ball U C RY there is m(U), M(U) > 0 such that

a(t,) 2mU)Id, la(t,z)| < MU), V(t,z)€ (0,T)xU. (1.2.12)
(H2) For each ball U C R? there is A(U) > 0 such that for all i,j < d
la;j(t, ) — a;j(t,y)| < AWU)|lz—vy|, Ve,yeUte(0,T). (1.2.13)

Proposition 1.2.12. Suppose that (H1) and (H2) hold, b € LP((0,T) x R), ¢ €
L3(0,T)xRY) for some p > d+2, and that there is a solution i = (1t )eefo,ry € 8Py
such that
|aij] [bi
1+ |z]2 1+ |z]

€ LY((0,T) x RY; pedt). (1.2.14)

Then p is the unique element in 8P, .

Proposition 1.2.13. Suppose that (H1) and (H2) hold, b € LP((0,T) x R%), ¢ €

L3(0,T) x RY) for some p > d+2. In addition, assume there is a positive function
|z|—o00

V € C*(R?) such that V(x) ——— oo such that
LapcV(t,z) <C+CV(z), Y(tx)e€ (0,T) xR (1.2.15)
for some C > 0. Then 8P, contains at most one element.
The function V is called a Lyapunov function.

Remark 1.2.14. (i) In both cases one can prove the unique element in 8P, satis-
fies (1.2.5)) with equality. Hence, if c =0, it is a probability solution.

(i) If ¢ = 0 and b is bounded on each (0,T) x U, then the assertions of both
propositions mean that for every probability initial value v, there is exactly
one, respectively at most one, probability solution to (FPE).

Another way to obtain uniqueness of probability solutions is via the corresponding
martingale problem, i.e. via the already indicated relation of FPEs to probability
theory. We will come back to this topic in due time.

Examples of nonuniqueness. Solutions to Fokker—Planck equations may be non-
unique, even for regular coefficients. A simple example in dimension d =1 is

a=0, blzx)=a5. (1.2.16)

The ODE ¢ = b(y),y(0) = 0 has the smooth solutions y*(t) = 0 and y*(t) = %
It is straightforward to check that (u})i>o0, i = 6yis), @ € {1,2}, are probability
solutions with initial datum p—o = do to , which in this case is the continuity
equation
Oppr = —div(bp),  pji=o0 = do

(Exercise 2.1). The source of non-uniqueness is the lack of sufficient regularity of b
and the degeneracy of a. However, even for a = Id and for smooth b, examples of
non-uniqueness exist. Indeed there is the following result.

Proposition 1.2.15. There is b = (by,...,bs) € C°(R* R*) such that the FPE on
(0,T) x R* with a = Idyx4 and b has several probability solutions.

Proof. Exercise 2.2 O

10
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1.3 Superposition principle
In this chapter, we set ¢ = 0 and consider the Fokker—Planck equation

O = Lg ppue,

(to which we simply refer as "the FPE”), where for Borel coefficients a = (ai;):,j<d,b =
(bi)i<a on Ry x R? we denote again Lopp = aijafjgo + b;0;p. On C R :=
C(R,,R?) with the topology of locally uniform convergence, we denote by s, t > 0,
the canonical projections mw := w(t). As usual, we assume a to be pointwise sym-
metric nonnegative definite.

The martingale problem.

Definition 1.3.1. A solution to the martingale problem associated with a and b is a
Borel probability measure P € T(C+Rd) such that

T
/ / |ai;(s,ms)| + |bi(s, 7s)|dsdP < o0, Vi,j<d, T >0,
CL R Jo

and for every ¢ € C°(R?) (equivalently: ¢ € CZ(R%)) the real-valued stochastic
process M¥? = (M/);>0 on C4R?,

t
M? ::@Oﬁﬁ/ (Laop) (s, 7, )ds
0

is a P-martingale w.r.t. the filtration F; := o(7,,0 < r < t). The set of all solutions
with initial condition P o my ' = v is denoted by M P, (a,b).

With obvious modifications, the martingale problem can be posed on [s, 00) in-
stead of Ry. In this case, the initial datum is a pair (s,r) € Ry x P, and martingale
problem solutions are measures on C([s,00), R?). The set of martingale solutions
with initial condition (s,v) is denoted by M Ps ,(a,b). The results of this section
hold for any initial time s. On a path space starting from time s, we denote for
t > s the canonical projection by ;.

A particularly useful property of the martingale problem is the stability of its
solutions w.r.t. to disintegration in the sense of the following lemma. For the
proof in the case of bounded coefficients, see [I8, Thm.6.2.1]. The generalization to
unbounded coeflicients follows by approximation.

Lemma 1.3.2. (i) Let v € P, s > 0, P € MP;,(a,b) and let (Qy)zere <
P(C([s,00),R?)) be the v-a.s. unique family such that © — Q.(A) is mea-
surable for all A € B(C([s,00),R%)) and

P(A) = g Qu(A) v(dz)

(i.e. (Quz)zera s the disintegration family of P w.r.t. ws). Then Q. €
MP; ,(a,b) for v-a.e. x € R

11
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(ii) Let t; > s, Y = (m5,...,m ) : C([s,00),RY) — RN A =0(Y), P e
MP;s ,(a,b) and (Qu)wec([s,o0),r4) be a regular conditional probability of P
w.r.t. A. Denote by Qlr the restriction of Q. to B(C([tn,o0),R%)), i.e.
Qlr(A) == Qu(u € C1R |y, o) € A), A € B(C([tn, 00),RY)), where up,, o)
denotes the restriction of u € C1R? to C([t,,00),R%). Then there is a set
Ae A, P(A) =0, such that Qly € MP,, 1, (a,b) for all w € A°.

Moreover, if P*, P2 € MP;,(a,b) such that P* = P? on A, then A can be
chosen such that P1(A) = P2(A) = 0.

The following standard result is one main reason why the martingale problem
continues is popular in probability theory. For the proof, see [I7].

Proposition 1.3.3. If X is a weak solution to the SDE
dXt = b(t, Xt)dt + O'(t, Xt)dBt, t> O, (131)

where o € R4 such that a = %O‘O’T, then Lx € Mg, (a,b). Conversely, for every
vePand P e MP,(a,b) there is a weak solution X to this SDE such that Lx = P.

Remark 1.3.4. Recall that solutions to this SDE are said to be weakly unique, if for
any two weak solutions X and'Y it holds

'C‘Xo :Lyo — LX :Ly.

Similarly, solutions are weakly unique for an initial datum v € P, if the previous
implication holds for all weak solutions with Lx, = Ly, = V.

For the rest of the chapter, we simply refer to as "the SDE”, and to the
corresponding martingale problem as "the martingale problem”. It is obvious how
to generalize the initial time of the SDE to any s > 0.

There is a wide literature on the martingale problem and, in particular, its con-
nection to Markov processes and probability theory, see for instance the classical
reference [I§]. In this lecture, we only use the martingale problem as a tool, via the
previous proposition.

We have already seen in Section that for every weak solution X to the SDE,
(Lx,)t=0 is a weakly continuous probability solution to the FPE. By Proposition
equivalently we have:

Corollary 1.3.5. P € MP,(a,b) = (Pom; )¢>0 is a weakly continuous probability
solution to the FPE with initial datum v, and all assumptions of Lemma[1.2.5] are
true.

The superposition principle.
The main aim of this chapter is to prove the following theorem, the first cornerstone
of the lecture.

Theorem 1.3.6 (Superposition principle). Let 0;;,b; : Ry x RY — R, 4,5 < d, be
Borel. For every weakly continuous probability solution (ut)i>o to the FPE with

12
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coefficients a = (a;;)ij<a = 300" and b such that

T
/ / laij| + bi| dpedt < oo, VT >0, 4,5 < d, (1.3.2)
0o Jre

there is a weak solution X to the SDE such that Lx, = p for allt > 0.

In particular, if o = v, then Lx, = v.

This result is relatively new: It was iteratively proven by Ambrosio, Figalli
(Fields-medalist!) and Trevisan between 2008 and 2016, see [T, 10} [19].

Due to the equivalence of the SDE and the martingale problem, we may instead
prove that for (y1¢);>0 as in the assertion there is P € M P, (a,b) such that Porr, ' =
g for all £ > 0.

Remark 1.3.7. (i) It should be remarked that there is no reqularity assumption on
a and b (except measurability).

(i) Assumption (|1.3.2)) can be generalized to

i (b, .
/ / lagl 102 ) < o, VT 0,05 < d, (1.3.3)
ra 1+ [z

see [9], which is essentially sharp ({-,-) denotes the standard Euclidean inner
product).

For merely local in space integrability there are counterexamples to the asser-
tion of Theorem [I.3.6| For instance, |MP,(a,b)| < 1 for every v € P, if
a(t, ) is strictly elliptic for every x and continuous in x uniformly in t > 0,
and a and b are locally bounded on Ry x RZ. But [7] contains an ezample of
such coefficients for which the FPE has several probability solutions for every
initial probability measure v (which do not satisfy )

(i1i) Weak continuity and constant mass 1 of (jt)i>0 s necessary, since the one-
dimensional time marginals of any weak SDE solution are a weakly continuous
curve of probability measures (Exercise 3.1). However, since every probability
FPE-solution as in the assumption of Theorem[I.5.0 has a weakly continuous
dt-version (Ezercise 3.2), the continuity assumption is no restriction.

(iv) For any solution as in Theorem (1.2.3) and (1.2.4) hold for all ¢ €

CE (R%). This follows by a straightforward approzimation argument.

The superposition principle allows to prove uniqueness of FPE-probability solu-
tions via weak uniqueness for the SDE:

Corollary 1.3.8. Let s > 0,v € P. If solutions to the martingale problem (the SDE)
with initial condition (s,v) are (weakly) unique, then there is, up to dt-zero sets,
at most one probability solution to the FPE with initial condition (s,v) such that

(1.3.2)) holds (with s instead of 0).

13
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Proof. Without loss of generality, let s = 0. Suppose u' = (u')i>0, i € {1,2},
are two probability solutions to the FPE with initial datum v, satisfying .
There exist weakly continuous dt-versions (fit);>o (with initial datum v), and by
the superposition principle, there exist weak SDE solutions X such that £ Xi = i

for all t > 0 and i € {1,2}. By assumption, fij = i? for all ¢ follows. Hence also
uf = p? dt-as. O

The reverse uniqueness implication is not true, i.e. uniqueness of FPE-probability
solutions for one initial datum v does not imply weak uniqueness of SDE solutions
with initial distribution v. Instead, one needs FPE-uniqueness for sufficiently many
initial times and measures:

Proposition 1.3.9. Suppose weakly continuous probability solutions (pt)i>s to the
FPE satisfying (with s instead of 0) are unique for every initial condition
(5,0,) € Ry x P, x € RL. Then solutions to the martingale problem (the SDE) are
(weakly) unique for every initial datum (s,d,), s > 0, x € RY.

Proof. Let x € R?. We have to prove
P! P> € MP,(a,b) = P'= P?
and the RHS is equivalent to
Plo(my....,m,) b =P%o (Mmoo ym,) Y, VO<to< - <t,  (1.34)

for all n € N. Then the assertion follows, since the proof for s # 0 is the same.
The assumption entails this equality for n = 1, since by Corollary [I.3.5] the curves
(PYom; Y)is0, (P?om; 1)is0 are weakly continuous probability solutions to the FPE
satisfying with initial condition J,.

Now we proceed by induction. Assume holds for n — 1 € N. For arbitrary
fi : R* = R measurable bounded, i € {0,...,n} and 0 <ty < --- < t,, we have to
show

Ep: [fo(me) - fu(me,)] = Epz [ fo(mey) -+ fulme,)]- (1.3.5)
Let (Ql,)wec,re be ar.cp. of PP wrt. o(my,...,m, ;). By Lemma (ii)
i7tn71

w € MP;, | wt, ,)(a,b) for P-a.e. w. By the last part of the lemma, the
exceptional set A such that the previous inclusion holds for all w € A can be chosen
such that P1(A) = 0 = P?(A). Hence, by assumption, for all w € A° N Ny, where
Ny, Py(N3) =0, is such that

}EQ%U [fn(mt,)] = Ep, [fn(ﬂtn)lo—(ﬂtm s 77Ttn—1)]7 Vw € Ny,

we have
EQif’”*l [f”(ﬂ-::_l)} = EQZ’W*I [fn(ﬂ-zz_l)] = ]Epz [fn(ﬂtn)‘o-(ﬂtm s aﬂ-tn,f1)}(w)v
which implies there is H : CyR? — R, bounded o(my,, ..., 7, , )-measurable such

that H = Epi [fn(m,)|o (e, ..., 7, _,)], both P'- and P%-a.s. Now we can con-
clude, since the LHS and RHS of equals Ep: [ fo(my,) -+ fa—1(me,_ ) H],i=1
and ¢ = 2, respectively. But for i = 1 and ¢ = 2, these integral values are the same by
the induction assumption, since the integrand is o(m,, ..., 7, ,)-measurable. O

14
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A natural question is whether the previous proposition implies uniqueness for all
initial data (s,v) € Ry x P. The answer is positive:

Proposition 1.3.10. Let s > 0 and assume |M Ps .(a,b)| < 1 for all z € RY. Then
|MP; ,(a,b)| <1 forallve?.

Proof. Exercise 3.3. O

Corollary 1.3.11. Under the assumption of Proposition[1.3.10, the FPE has at most
one weakly continuous probability solution satisfying (1.3.2]) (with s instead of 0)
with initial condition (s,v) for every probability measure v and s 2 0.

Proof. Let (s,v) € Ry x P. Proposition [1.3.10| yields |M; ,(a,b)| < 1, and the
assertion follows from Corollary O

1.3.1 Deterministic special case

Here we consider the case a = 0, i.e. the FPE is the continuity equation
Oy = —div (bu), € (0,00). (1.3.6)

In this case, we have the following characterization of solutions to the martingale
problem:

P € MP,(0,b) <= P €P(C,R?) such that P(C,.(b)) =1,Pom," = v,
T
/ / b(t, wt(t))dtdP(w) < oo VT > 0,
CyReJ0

where C,p(b) denotes the set of absolutely continuous maps y : [0,00) — R¢ such
that y'(t) = b(t, y(t)) dt-a.s. (i.e. the set of integral solutions to the ODE determined
by b).

The superposition principle asserts: For any weakly continuous probability solu-
tion (u¢)e>0 to such that fOT Jga [b(t, 2)|dpedt < oo for all T > 0 there is a
probability measure P on the set of integral solutions to the ODE corresponding to
b such that Pow{l = s, t 2 0.

In particular, the existence of such a solution (4);>0 with initial datum v yields
the existence of at least one integral solution to the ODE with initial datum z for
v-a.e. © € R?. Conversely, if for v-a.e. z there is at most one integral solution to the
ODE with initial datum z, then there is at most one weakly continuous probability
solution to the continuity equation with initial datum v satisfying the previously
mentioned integrability condition.

Analog statements hold for an initial time s > 0.

1.3.2 Proof

We now prove Theorem closely following Trevisan [I9], restricting to the time
interval [0, 1] instead of Ry. The latter case is a simple modification of the proof
below (the definition of solution to the FPE and the martingale problem on [0, 1] is
the same as on R, with the obvious modifications). The idea is the following.

15
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(1) Approximate a and b by sufficiently regular coefficients a™ and b™, consider
the corresponding FPEs with solutions p™ for which the assertion is already
known and such that p” — p and (a™,0") — (a,b), in a suitable sense. This
yields the existence of P" € M P,n(a",b") with P" o, " = pj.

(2) Prove tightness of (P")nen in P(Cpp,jR?) in order to extract a weak limit
point P.

(3) Prove P € MP,,(a,b).

Remark 1.3.12. If ™ — p weakly, then Po7rt_1 = py follows from the weak conver-
gence P* — P and P" o, * = pl.

First, assume, writing a(t) = [x — a(t, z)] and likewise for b,

1
(A1) /0 la(t)|cz ey + [b(t)]c2raydt < oo.

In this case, the superposition principle holds. Indeed, by the standard Picard-
Lindelsf theorem, under (A1) the SDE has a unique weak solution for any initial
condition v € P. On the other hand, by Proposition for any initial proba-
bility measure v, there is at most one weakly continuous probability solution to the
FPE (by (A1), every such solution satisfies (1.3.2)). Hence the latter exists and is
necessarily the one-dimensional time marginal curve of the unique SDE solution.

The generalization from this base case to the full assertion of the theorem proceeds
via several steps: We verify the assertion under each of the following increasingly
general assumptions. Below we denote by U C R? an arbitrary ball.

1
(A2) / sup |a(t, )| + sup |b(t, z)|dt < oo,
0o = T

1
(43) [ falOl ) + Ol it < 00 W and (33,
0

(A4) /0/Rd|a(t,:c)|+|b(t,x)|d,utdt<oo.

Each step proceeds via (1)-(3), and the main task in each step is to choose a suitable
approximations of the coefficients and the solution.

We first present the general ideas for (1)-(3) before applying them to each gener-
alization step. Let u = (11t):e[0,1] be the solution from the assertion.

(1) Approximation

(1).1 Image measures of smooth maps. Let g = (¢',...,¢%) € C%(R% R?) have
uniformly bounded first- and second-order derivatives, and set p? = (uf)scjo,1] =
(11t © g Vtejo,1]- Note po g € CZ(R?) for ¢ € CZ(R?) and

d
Lap(#09) =Y Lap(g")(@Okp) 0 gl + D ai;0,9"9;'[(070) © g).
=1 Fi=1
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For any t > 0 and k,l < d, let af,(t),b](t) : R — R be Borel maps such that

E,,[aij(t)0:g"0;d' o (9)] = af,(t) o g, E,,[Lapg"()|o(g)] =bl(t)og, e — as.

af,(t) and b{(t) exist and are uniquely determined fpy-a.s. by the factorization
lemma. Note that af,(t) and bf(t) are the density of [(a;;(t)0;g%0;¢")pus) 0 g=! and
[(Lap(g%)pe] 0 g7 wort. pf, respectively (Exercise 4.1).

19 is a weakly continuous probability solution to

Oy = LZy’bth; te [Oa 1]

(Exercise 4.2). Moreover, by definition we have for all ¢ > 0 and p € [1, o0]

lag, ()] e @apgy < Cla(®)|po@ag)s 0] r ey < Clla(®)]+ 16| Lo ®esu,)
(1.3.7)

by the contraction property of conditional expectations, where C' > 0 depends only
on the L*-norm of the first- and second-order derivatives of g.

(1).2 Mollification by convolutions. Let ¢ : R? — R, o > 0, be a smooth probability
density (w.r.t. dx), and set pix 0 = (f1¢ % 0)1eo,1], 1. Jpa f d(pte % 0) = [a(f *0) dpis.

Since ¢ * o € CZ(RY) for ¢ € CZ(R?) and
Lap(p % 0) = bi(0ip) ¥ 0+ aij (35 f) * o,
defining

d((aij(t)pe) * 0) . Ol 1) e d((bi(t)pe) * 0) .
d(ps * 0) (=) b (t,2) := d(pe * 0) @)

(exists by Lemma[1.3.13]) we find that u * o is a weakly continuous curve of proba-
bility measures and solves the FPE

aj;(t,x) =

Oy = Lye pevt, t2>0 (Exercise 4.3).

The following lemma can be found as Lemma A.1 in [I9]. Recall that M, denotes
the set of signed Borel measures on RY with finite total variation. We denote by
D?p the vector of i-th partial derivatives of o (i.e. the entries of D!p are the entries
of the Jacobian of p; the entries of D?g are the entries of the Hessian of o, ...).

Lemma 1.3.13. Let o also satisfy |D'o| < Co pointwise for i € {1,...,k} for some
C >0, and let n* € M;r, n? € My with n°> = hn', where h : RY — R. Then 1% x o
has a density h, w.r.t. n* * o, h, has a C*-version and

|hg‘Lp(Rd;n1*g) < |h‘Lp(Rd,;n1), Vp € [1, o0].

Morevoer, for every convexr map © : R — R

/ O([hgl)d(n" * o) < / o([h]) di". (13.8)
R4 R4

We will apply the lemma for n* =y, n* = ai;(t)ps, b = aii(t) and h, = af;(t),
and, similarly, for b; and b7.
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(2) Tightness

Recall: A sequence of Borel probability measures (u,)nen on a metric space S is
called tight, if for every € > 0, there is a compact set K C S such that u,(K) > 1—¢
for all n € N. If (i, )nen is tight, it contains a weakly converging subsequence. A
sufficient criterion for tightness is the existence of a coercive function f : S — R4
(i.e. {f < ¢} is compact for all ¢ > 0) such that

sup/ fdup, < oo.
neNJ s

See also Exercise 4.4. For the rest of this section, for P € T(C[OJ]Rd% we sometimes
write P; := P om; *. We need the following result, see [I9, Thm.A.2, Cor.A.5].

Proposition 1.3.14. Let 6,01,05 : Ry — R be functions such that ©;, i € {1,2},

are convex with 6
lim 6(z) = lim (@)

—00 T—00 €T

=00, ie{l,2}.

Then there exists a coercive map U : C[OJ]RI — Ry U {oo} such that for all Borel
maps a;;,b; on [0,1] x R? such that a = (a;;)i j<a is pointwise nonnegative definite
and symmetric and every P € M Pp,(a,b), we have

1
d9(|f|)dP0+/O O1(|Lap f|)+02(aij0i f0; f)dPidt, Vf € CE(R?).

(1.3.9)
Here we use the notation fom: Cio 1R — Clo1RY, fom(w) = [t — f(me(w))].

Ep[W(for)] < /

R

So, if for our sequence of FPE-solutions u™ for approximate coefficients a™, b"™, we
can find 0, ©;, i € {1,2} such that the RHS of is finite and bounded uniformly
in n for the corresponding martingale solutions P™ obtained by a previously proven
step of the theorem, then provides a criterion to prove tightness of (P"),en-

(3) Limit

Here we assume (P"),cn obtained in part (1) has a weak limit point P, and we
prove P € MPp,(a,b). The latter holds if and only if: for all s,t € [0,1], s < ¢,
v € C, lelez <1, and b : Clo1/R? — R continuous, bounded and F,-measurable
it holds

t
/ h {go O — POy — / Ly pp(r, ﬂ'r)dr} dP = 0. (1.3.10)
C[oyl]R’i s

This identity holds for P™, a™ and b" instead of P,a and b, hence by the weak
convergence P™ — P it remains to prove

t t
[ [ [ ewstrmar]aer— [ ] [ Losetrmarap 2220
C[U)”Rd S C[Oyl]Rd S
(1.3.11)

Now we prove this convergence for both kinds of approximations considered in (1).
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(3).1 Image measures For each n € N, let g, satisfy the assumptions of g in
(1).1 and, in addition, g,(z) = z on B,(0), Dgn —— 14xa (the unit matrix),
D?g, 22, 0 and |Dig,(z)] < C for all i € {1,2}, n € N and z € R%. Denote
p" = p9n where the latter is defined as in (1).1 above.

Let L denote any operator of type
L= @Z‘jaij + 5161

for continuous and compactly supported coefficients a;; and b;, 1,7 < d. We subtract

on the LHS of ([1.3.11]) the term

t t
/ h{/ Le(r, ﬂr)dr} dpP" — / h{/ Le(r, ﬂr)dr} dP, (1.3.12)
C[oyl]Rd S C[O,l]Rd S

and note that this difference vanishes as n — oo by the weak convergence of P" —
P. Consequently, the limsup,, of the absolute value of the LHS of (1.3.11) is not
affected by first subtracting this difference term before taking absolute value and

limsup,,. So, we estimate the lim sup,, of the absolute value of the LHS of (1.3.11]),
up to a multiplicative constant depending only on h, by

¢ ¢
lim sup/ / |Lan pnp — Lepldplrdr + / / |Lape — Lpldudr. (1.3.13)
n s JR4 s JR4

Let us focus on the first integral term. By definition of a™, ™ and u”, it is equal to

t
/ /Rd By [La,p( © gn)lo(gn)] = Lip 0 gn|dpirdr
t —
= / /Rd |Eltr [La,b((p o gn) - L()O (e} gnlg(gn)]durdr
t —
S / /Rd |La,b(<pogn) —Lgoogn‘durdr

t d d
< /S /d Z |a'7;jaig’f)7,ajg’fl — Qg o gn| + Z |La7b(gﬁ) — by, 0 gp|dpydr,

RY pi=1 k=1

where for the equality we used that Ly o g, is (g, )-measurable, the first inequality
is due to the L!-contraction property of conditional expectations, and the second
inequality is obtained by writing the previous line explicitly and using the estimate
lple2 < 1.

Using the convergence properties of g, and its first- and second-order derivatives
specified above and taking lim sup,, of the RHS gives the estimate

t t d d
lim sup/ / ‘Lan7bn(p - Z_L<p|du:‘dr < / / Z |aij - aijl + Z |bz — Ez| dp-dr.
n s JRA s JRd i—1

i,j=1

19



1 Linear Fokker—Planck equations

Hence, taking into account (|1.3.13)), altogether the lim sup,, of the LHS of (1.3.11])
is bounded above by

t d d
20 i'__i' bl_BZde'
[ L3 b =l + 3 i = bl dr

i,j=1 i=1

Since a;; and l;ij are arbitrary continuous and compactly supported maps, and since
C.(R9) is dense in L'((s,t) x R%; () for every locally finite Borel measure ¢, we can
make the previous sum arbitrary small and, hence, conclude ((1.3.11)).

(3).2 Mollifications

Let (0n)nen be a sequence of smooth probability densities w.r.t. dx such that
ondx 2220 8o weakly. Then the argument is similar to the previous case. Details
are left as Exercise 5.1.

Proof of Theorem [1.3.6]

Now we apply (1)-(3) to coefficients satisfying (A2) to deduce the assertion from
the validity of the assertion for coefficients satisfying (A1). Then, one assumes (A3)
and, via (1)-(3), proves the assertion in this case, relying on the validity in the case
(A2) proven before. Finally, one proceeds similarly under the general assumption,
i.e. (A4), by relying on(A3). In each step, one has to make fitting choices along

(1)-(3)-

Under assumption (A2).

(1). Let ¢(x) := Cexp(—+/1+ |z|?), where C' > 0 such that |¢|;: = 1, and set
on = n%(nz), n € N. Then |D%p,| < cn?o,, i € {1,2} for some ¢ > 0, and
ondzr 2222 5y weakly. Set ™ := u * o,, and note i 2720, iy weakly for all
t €[0,1]. By (1).2, u™ is a weakly continuous probability solution for the FPE with
coefficients a™ := a®» and b" := b defined as in (1).2 with g,, in place of p. By
Lemma we have for all p > 1 and ¢ € [0, 1]

lai; () Lo maspny < la(t)|Lo@asp,)-

An analog estimate holds for b;, ¢ < d.

Since a; and b}’ satisfy (A1), there is a family (P"),en, P" € M Py (a™,b") such
that P/* = uf for all ¢ € [0, 1].

(2). Since the sequence (u)nen converges weakly to po, it is tight, and thus
there is an increasing function 6 : Ry — Ry with lim, ., #(2) = oo such that
sup,, Jpa 0(|z|) dpg < 1 (compare Exercise 4.4). By (A2) and the de la Vallée Poussin
criterion, there is a nondecreasing, convex map © : Ry — R with lim, % =
oo such that

/0 @(sgp la(t, z)]) + @(Slip |b(t,z)|) dt < oco.

For k € {1,...,d}, denote by xj : R? = R the map = = (z1,...,24) — ). Apply
Proposition (1.3.14)) with §, ©; = O, = O, f = 2. Xr, k < d, where xr : RY — [0, 1]
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1 Linear Fokker—Planck equations

denotes a standard cutoff function, equal to 1 on Bg(0), R > 0, to obtain the
existence of a coercive (hence lower semicontinuous) map ¥ such that

Epn[¥(2rxR 0 T)]

1
< /d 0(|zkxr|)dus +/ ®(|Lan)bn$kXR|) + @(a%@i(xka)aj(ackXR))du?dt.
R 0

Note zp xR Bizeo, Tk, |eXr| < |2k|, Oizkxr is bounded uniformly in R > 0 and

8%3%)( r converges to 0 pointwise as R — oo. Hence, the lower semicontinuity of

¥, the monotonicity of 8, Fatou’s lemma and dominated convergence imply

ErnW(onom] < [ oo+ [ [ @R0) +O(apl) dufat

By construction of § and (|1.3.8]) the RHS is bounded above by
1 t
1+/ / O (|bw ())+O (Jark (t)]) dpedt < 1+/ O(sup|b(t, )])+O(sup|a(t, z)|)dt < oo.
0 R4 0 x x

Since w — Zizl U (zj0w) is coercive on Cjg 1jR? (Exercise 5.2), we obtain tightness
of (Pn)neN.

(3). Follows from (3).2 above. Remark [1.3.12| concludes this part of the proof.
Under assumption (A3). Proceed similarly as in the previous case, but use im-
age measures instead of mollifications to approximate a and b. Steps (2) and (3)
follow similarly as in the previous case.

Under assumption (A4). Similarly to the previous cases, approximate a and b

by convolutions. For the detailed arguments of the previous two cases, please see
19l p.38,39] (Exercise 5.3). O
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2 Connection to Markov processes

There is vast literature on the theory Markov processes and their applications. A
very short list of standard references (in no particular order), including material
on discrete time Markov processes (usually called Markov chains) is: [Stroock2014],
[LeGall2016], [Liggett2010], [Eberle2010] (lecture notes), [Kirkwood2015], [Wentzell81],
[GikhmanSkorokhod04].

2.1 Brief repetition of Markov processes

Let (S, 8) be a measurable space. A map A : Ry x Ry x M (S9) — M (S) has the
flow property, if

A(s,t,¢) = A(r,t,A(s,m,C)), YO<s<r<t CeM(9)A (2.1.1)

Likewise, A has the flow property in M C M:(S), if A(s,t, M) C M forall0 < s < ¢,
and (2.1.1)) holds for all ¢ € M.

Definition 2.1.1. A tuple (Q, F, (X¢)t>0, (Px)zes), consisting of a measurable space
(Q,7), an S-valued stochastic process X = (X;)¢>0 on Q and a family (Py)zes C
P() is a Markov process, if

(i) z — P,(T") is 8 — measurable for all T € F,

(ii) there is a filtration (F¢)i>0 on (2, F) such that each X; is Fr-measurable and

Pyo(Xi4s € B|F,) = Px.(X, € B) Py—as. Vs, t>0, BeS,zeS. (21.2)

A Markov process is called normal, if P,(Xg=xz)=1forallz € S.
Without further mentioning, we always consider normal Markov processes.

Remark 2.1.2. If (i) is true for (F)is0 and F, C F, for all 0 < t, then (ii) is true
for (F1)iso, if (Xt)i=o0 is (Fi)i>0-adapted.

The generic example for Markov processes with continuous sample paths is the
canonical model:

Example 2.1.3 (Canonical model). @ = C(R4,S5), m : Q@ = 5, m(w) = w(t),
F=o0(m,t 20), Fr=0(m,0<r <), Xy =7y

P, is often given as a family of solution laws to an SDE (equivalently: as a family
of solutions to the corresponding martingale problem), and the Markov process is
normal if and only if P, has initial condition §,. Every Markov process of this type
can be modeled on the canonical model.

22



2 Connection to Markov processes

(2.1.2) is the Markov property. An intuitive interpretation, in particular for nor-
mal Markov processes, is that (P,).cs models a random memoryless evolution in
time on S, and P, is the law of the evolution trajectories originated from z. Another

succinct description of is:

"The past (of the process X with law P, ) is independent of the future given the
present.”

The "future” is the event {X;1s € B}, the past is F, i.e. the information available
at time s, and the present is the random state X at time s.

Markovian semigroups. A Markovian transition function on S is a family of mea-
surable kernels (py)i>0, pr : S X 8§ — [0,1] such that

(i) pe(x,S) =1, Vt=0,z€S,

(ii) ptps = pt+s, which means
/pS(yvA)pt(x7dy) = pt+s(I7A), Yz e S,A & S,t75 > 0. (213)
s

(2.1.3) are the Chapman—Kolmogorov equations.

Lemma 2.1.4. Let (pt)i>0 be a Markovian transition function and define A via
A(s,t,Q) ::/pt,s(x,dy) ((dz) € M, d.e. A(s,t,¢)(A) :/pt,s(x,A)C(dx).
s s

Then A satisfies the flow property (2.1.1)).
Proof. Exercise 5.4. O

In general, the converse is not true. We recall the following well-known results
without proofs.

Proposition 2.1.5. (i) Let (2, F,(Xt)t>0, (Py)aecs) be a Markov process. Then
(Pt)iz0, pe(x, A) := Pp(Xy € A), is a Markovian transition function (Exercise
5.5). Moreover, for all f : S"*1 — R bounded and 8"*'-measurable and all
0<tg<... <tn

By [f(Xior- > X0,)] (2.1.4)
S

t
:// (/f(xov---7In)ptn—tn,l(In—l,dxn))ptn,l—tn,z(In—zadCCn—l)-..pto(ﬂﬁ,dﬂﬁo)-
S S

(i) If (S,8) is Polish, then for every Markovian transition function (pt)i>o there
is a Markov process with (2.1.4)).

For a normal Markov process, the corresponding Markovian transition function
satisfies po(x,-) = 0,(-) for all z € S.
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2 Connection to Markov processes

For a Markov process and any v € P(S), one sets P, := [ P, v(dz) and some-
times considers (P,),cp(g) instead of (P)zcs. It is straightforward to check

B [f(Xiy, -, X2,)]

:/S-/S.../S</Sf(x03~..7xn)ptntn_1(mn1,dxn))ptn_1tn_z(xHQ,dfbn1)...pt0(x,dl'0)y(d{lj),

The essence of the previous proposition is that the measures P, of a Markov pro-
cess are uniquely determined by its transition function and initial datum. Succinctly
written, the above formula reads

-1 _
Py o (Tyy ey Te,) " = UDtoDty—toPba—t1Ptg—to ** Dtn—tyn_1 -

Markovian (dual) semigroups and generator. Denote by S;r the set of bounded

S-measurable maps ¢ : S — R;. For a Markovian transition function (p;);>o,
define

PiSt o 8F, (Pf)(@) = /S F(0) pe(, dy).

(Py)t>0 is called the Markovian semigroup associated with (p¢)¢>o. P; is simply the
canonical extension from {14|A € 8} to 8; of the map p; : 14 — [z — pi(z, A)].
Since we only consider normal Markov processes, we have Py = Id.

The dual semigroup (P} );>0 consists of the maps

Pl :P(S)— P(S), (Pv)(A):= /Spt(a:,A) v(dr),

i.e. in particular P;d, = pi(x,-). By Lemma2.1.4 (s,t,¢) — Py ¢ has the flow
property in P(S5).

Definition 2.1.6. The generator of a normal Markov process with Markovian semi-
group (P)¢>0 is the linear, typically unbounded, operator (A4, D(A)),
P _
Af)e) o timg PL@) = 1)

h—0 h ’

and the domain D(A) consists of those measurable maps f for which the limit on
the RHS exists for every @ € S, possibly restricted to subspaces such as Cy(.S) or
LP(S; u) for a measure p on 8.

In other words, Af is the (pointwise in x) right-derivative of ¢ — P, f in ¢t = 0.

Time-inhomogeneous Markov processes. So far (with the exception of the flow
property), in this chapter we considered the time-homogeneous setting: the mea-
sures P, in Definition do not depend on a time parameter s, considered as
the "starting time” of the corresponding process, and the corresponding Markovian
transition function (p;):>o is a one-parameter family of kernels. Deﬁnition can
be extended to the time-inhomogeneous case. For the sake of simplicity, we only
consider this generalization in the canonical model as follows.

Let, for s > 0, Qs = C([s,00),5), Fs = o(ni,s < 1), For = o(wi, 7 € [s,1]),
where 7§ : Qg — S, 7 (w) = w(t).
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2 Connection to Markov processes

Definition 2.1.7. A family (P; ;)scr, «es of Borel probability measures P; , € P(€2)
is a time-inhomogeneous Markov process, if

(i) © — Ps,(T") is 8-measurable for all T' € F5 and s > 0,

(ii) the time-inhomogeneous Markov property holds, i.e.

P, ,(7f € B|F,,) = Prpe(m} € B) Poy—as., YO<s<r<tazeSBeS.

Again, we restrict to the normal case, i.e. Ps(n = z) = 1. The assertions of
Proposition [2.1.5] have time-inhomogeneous analogs.

Similar to the time-homogeneous case, a family of measurable probability kernels
(Ps.t)s<ts Ps,t S x 8 = [0,1] such that ps; = ps,pre for all 0 < s < r < ¢ is called
time-inhomogeneous Markovian transition function. For a time-inhomogeneous
normal Markov process (P ;)scr, zes, We have pgs(x,-) = d,(-) and the family
(Ps,t)s<ts Ps,t(x, A) := Py »(m§ € A), is a time-inhomogeneous Markovian transition
function (Exercise 6.1), which extends to the Markovian semigroup

Poy: 8§ = 8F, (Poaf)(a) = /S F(9) pac(, dy).

The dual semigroup is (P5;)s<t,

P:,t s P(Qs) = P(Qy), (P;tu)(A) = /psvt(z,A) v(dz).
s
A time-inhomogeneous normal Markov process has the generators A, defined by

— lim Pssinf(x) — f(@)
" =0 h ’

(Asf)(x)

with domain (which may depend on s) D(A;), consisting of those functions f for
which the limit on the RHS is defined for every x (with the same possible restrictions
as in the time-inhomogeneous case).

It is left as an Exercise 6.2 to prove: Definition extends Definition [2.1.1
and the time-inhomogeneous version of Lemmais true for (ps1)s<t, Ps.e(2, A) =
P o (m} € A), as well, i.e. (s,t,() + P;,C has the flow property in P(S).

2.2 Fokker—Planck equations and Markov processes

Let S = R?. We are now going to explore the relation between solutions to Fokker—
Planck equations and Markov processes. Consider locally bounded Borel coefficients
a = (aij)ij<d,b = (bi)i<a on Ry x R? such that a(t, ) is symmetric and nonneg-
ative definite for all (t,2) € Ry x R? and the associated Fokker-Planck equation
(FPE]).

For the following result, we omit details on the assumptions on the coefficients.
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2 Connection to Markov processes

Proposition 2.2.1. Suppose (Ps7x)seR+,meRd is a time-inhomogeneous Markov process
with generator

(Asf) (@) = aij(s,2)07 f (@) +bi(s,2)0: f(x), CZ(R?Y) C D(A,) Vs € Ry, (2.2.1)

Assume sufficient regularity for a and b. Then t — PJ,0, is a weakly continuous
probability solution to the FPE

Oppu = Lz,b#t
on (s,00) with initial condition ps = 0.

In the context of Markov processes, the FPE is also called Kolmogorov forward
equation.

Sketch of proof. Without loss of generality let s = 0 and set Fj,d, =: pf. For
f € CP(R?Y) and t > 0, we have

flb(/Rd fdpiy — /Rd duf) = PO,t(%(Pt7t+hf(x) ~ f(x))). (2.2.2)

Thus, for h — 0 we have

3 1 x x x

tin 3 ([t [ ) = PAd)@) = [ Lot ) i), (2:23)
h—0 h Rd Rd Rd

ie. % Jga fduf = Jga Lapf(t,y) dpf (y). It remains to justify that also the left

derivative of [, f dpuf exists and coincides with the RHS dt-a.s. Finally, integrating

over any interval [0, T] gives the result. O

Now assume the FPE is well-posed among probability solutions with global spatial
integrability. More precisely, assume:

(A1) For every (s,z) € Ry x R?, there is a unique weakly continuous probability
solution 5% = (u;"")t>s to (FPE]) with initial condition u$* = &, such that a;;, b; €
Lt ([O, T] x R%; uf’:ﬁdt).

Theorem 2.2.2. Under assumption (A1), there is a unique time-inhomogeneous
Markov process (Ps ¢)s>0 zera with Markovian transition function ps ¢ (x, A) = g (A),
and Ps ;. is the law of the unique weak solution to the SDE

dXt = b(t, Xt)dt + O'(t,Xt)dBt, XS =, t 2 S. (224)

As usual, o in (2.2.4)) is defined by a = %O’UT, and B is a d-dimensional standard

Brownian motion.

Proof. The uniqueness of the Markov process is clear, consider for instance the
time-inhomogeneous version of (2.1.4). (A1) allows to apply Theorem[I.3.6]in order
to obtain a family (R97£)86R+7xekd such that P, is the law of a weak solution to
. By Proposition each P, is the unique solution law with initial datum
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2 Connection to Markov processes

(s,z). To prove the Markov property, i.e. Definition m (ii), first note that for
w € Qg the path measure P, s () is the unique element in MPT,(;W%Q) (a,b). Denote
by (QS’I)’T)WEQS ar.cp. of Ps, wrt. Fs,. We use the fact that the assertion of
Lemma [1.3.2] (ii) remains true for any choice A = o(75, s < u < t). We choose
A = F,, and obtain that the restriction QS;)TT of Q5™ to B(1,) is an element
of MP,,,(;Wﬁ(W)(a7 b), for P z-a.e. w. Thus

Q(S,a;)ﬂ‘ = Prﬂrf,(w)v R@,x‘a~s~

w,=r

Since P, o(C|Fs,)(w) = Q™" (C), Py 4-a.s., for each C € B(Q,) (with zero set
depending on C), we obtain, letting C' = {75 € A} for any t > s and B € B(RY):

Puo(} € B|F, ) (w) = QU7 (nf € B) = QWL (n] € B) = Py oy (n} € B), Pyg—as.

O

Remark 2.2.3. If a and b are continuous in x and continuous in t locally uniformly
in x, then for the generator (As)s>o of the time-inhomogeneous Markov process of
the previous proposition one has C2(R?) C D(Ay) for all s > 0 and

Proof. Exercise 6.3. O

The assertion can be generalized to less regular coefficients, but the proof is more
involved.
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3 Nonlinear Fokker—Planck equations

In this chapter we study nonlinear Fokker—Planck equations which, in contrast to
linear ones, consist of coefficients depending on the solution itself. This renders the
theory of existence and uniqueness of such equations considerably more difficult.
On the other hand, the nonlinearity allows to cover large classes of very important
nonlinear PDEs. Also the connection to probability theory gains a new compo-
nent, namely the theory of interacting particle systems. Nonlinear Fokker—Planck
equations belong to the most widely used equations in statistical mechanics and
physics, see for instance [II]. A standard reference for the nonlinear case is [8] and
the references therein. For more recent results, some references will be mentioned
throughout the chapter.

3.1 Definition, existence, uniqueness

Let a;j,b; : Ry x M xR? — R, 4,5 < d, such that a(t, ¢, z) is pointwise nonnegative
definite and symmetric for all (¢,(,z) € Ry x M x R, where M is a subset of
M (for instance, the set of measure absolutely continuous w.r.t. dz). We consider
nonlinear Fokker—Planck equations of type

Opor = 8%(aij(t7ﬂt,x)ut) — 0 (bi(t, pot, ) pte), t=0 (3.1.1)

(simply considered as "the NLFPE” in the sequel). For u € M, we set, for ¢ €
C*(RY),

Lapup(t, ) = ai(t, p, 2)050(x) + bi(t, p, 2) ().
As before, in general solutions are measure-valued curves ¢t — p;. One can consider
cases where a(t) and b(t) depend on ((p)¢>0,2) instead of (s, x); also the case of
locally finite signed measures can be considered. We will, however, restrict ourselves
to the case presented above.

Examples. Global dependence. The prototype of nonlinear coefficients with global
measure dependence is

b(t, pu,x) = / K(t,z,y)du(y), K:R; xR?xR?—RY, (3.1.2)
Rd

and likewise for a. Specifically, a common case is K(t,z,y) = Vk(t,z — y) for
k:Ry x R? = R. k is called a potential.
Local dependence. A very important class is given by coefficients of type

- du ~ dp .
aij(ta /1,,1’) = aij (ta %((E), (E), bi(tvﬂa (E) = bz <ta %((E), {E), 1, < da (313)
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3 Nonlinear Fokker—Planck equations

where &ij,l;i Ry xR xR? - R and %(z) denotes the density of p w.r.t. dz,
evaluated at x. Without further mentioning, we always consider the version of
Z—‘; which is 0 on those x € R for which lim,_,odx(B,(0))~'u(B.(z)) does not
exist in R. By Lebesgue’s differentiation theorem, the set of such x is a dz-zero set.

Then (u,y) — %(y) is B(M;"<<)®B(]Rd)-measurable by [12, Sect.4.2.], where M;«

denotes the subset of Ml‘)" of measures absolutely continuous w.r.t. dx, equipped
with the topology of weak convergence of measures. The coeflicients are defined on

Ry x M « X R%. This case is often called Nemytskii-case, and a and b as in (3.1.3)
are of Nemytskii-type.

In the Nemytskii-case, the NLFPE is often posed in density form
dpu(t, ) = 07 (as;(t, u(t, z), z)u(t)) — div (g(t,u(t, ), z)u(t)),

i.e. in comparison with the general measure-valued formulation p; = u(t, x)dx.
Note that even if r +— a;;(¢,r,«) is continuous for fixed (t,z), the map p —
aii(t, p,x) = a;(t, %(m),x) is not continuous w.r.t. the weak or vague topology
(or, as a matter of fact, any other reasonable topology on M;), since p — %(m) is
not continuous between any of these topologies and R. Hence, in the Nemytskii-case,
one faces irregular coefficients.
We give a few important examples of NLFPEs of Nemytskii type.

(i) The classical Porous Media Equation (PME)
du(t) = A(u(®)™), (t,z) € (0,00) x RY,
m > 0, for the class of nonnegative solutions v > 0 can be written as
Ovult) = 07 (aij (u(t, z))u(t))

with a;;(r) = 6;;7™~!. Hence, the PME is a Nemytskii-type NLFPE in density
form. The cases m > 1 and m < 1 are called slow and fast diffusion case,
respectively (m = 1 gives the heat equation). The reason for these names is
that if u(x) — 0, for m > 1 and m < 1 the diffusion «™~! degenerates and
explodes, respectively.

(ii) More generally, consider the generalized PME
du(t) = AB(u) — div (DB(u()u(t)), (t,z) € (0,00) x RY,

where 8 € C'(R), 3(0) =0, D : R? - R B :R, — R, which can be written
in NLFPE density form as

Opu(t) = afv(aij(u(t, x))u(t)) — div (b(x, u(t, x))u(t)),

with ay;(r) = 20, b(a,r) = D(x) B(r), where 2O = 5(0).

r

(iii) Consider the p-Laplace equation

Bru(t) = div(|Vu(®)[P-2Vu(t)), (t,z) € (0,00) x R
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3 Nonlinear Fokker—Planck equations

For a suitable subclass of solutions, it is equivalent to
Opu(t) = A(|Vu(t)|p72u) — div (V(|Vu(t)|”72)u(t)),
which is a Nemytskii-type NLFPE in density form with coefficients
aij(u, @) = 8;5|VulP2(x), bi(u,x) = 0| VulP~2(z).

(iv) The 2D Navier—Stokes equations in vorticity form can written as a Nemytskii-
type NLFPE in density form.

The definition of solutions in the nonlinear case is analogous to Definitions [1.2.1
We explicitly only state the following notion.

Definition 3.1.1. A Borel curve (p¢)i>0 € M solves (3.1.1)) with initial value v € M;‘,
if (t,x) — a;;(t, g, @), bi(t, p, z) are Borel maps in LL _((0,00) x R%; y;dt), and for

every ¢ € C°(R?) there is a set J, C (0,00) of full dt-measure such that for all
teld,

t
/Rd odu; = /Rd pdv+ Tli%lJr/ /]Rd Lap,pu,pdpsds. (3.1.4)

Compared to the linear case, here we omit a zero-order coefficient ¢ (in general
also dependent on the solution). A bit more generally, one may require pu; € M only
dt-a.s. and the existence of a Borel curve dt-version i of u such that i, € M for all
t > 0 such that

t
duy = d li L p . pdusds.
/Rdsﬁ it /Rdsﬁ V+r—1>r51+/T /]Rd byfis P AfLsAS

Remark 3.1.2. One could require the coefficients to be B(R}) @ B(M;) @ B(RY)-
measurable (where B(M;") denotes the Borel o-algebra w.r.t. either the weak or
vague topology). Then it follows that (t,z) — a(t, s, x) and (t,x) — b(t, pt, )
are product measurable on Ry x R? for every Borel curve (u;)i>0 (Ezercise 7.2).
We follow a slightly different approach by not requiring such a property, but instead
require any solution (u)i>o to render (t,x) w— a(t,us,x) and (t,z) — b(t, py, )
measurable. Conceptually, the latter is a weaker assumptions on the coefficients
without narrowing the notion of solution.

Linearized equations. A very important object related to the nonlinear FPE is
the family of associated linearized FPEs, obtained as follows: For any Borel curve
t— e € M;, consider the linear FPE

Oy = 82»2]» (aij(ut)ut) — 0;(bi(p)ve), t>0, (u-fFPE)

where by a;;(u¢) and b;(1;) we abbreviate the map @ — a;;(t, e, ) and b; (¢, e, ),
respectively. For given p = (put)¢>0, we denote this linear equation by (u-(FPE).

Remark 3.1.3. (i) A solution (ut)i>o to the nonlinear FPE in the sense of Def-
inition with initial datum v also solves (u-¢FPE), i.e. “any nonlinear
FPE-solution solves its own linearized FPE as well”.
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3 Nonlinear Fokker—Planck equations

(i) The coefficients of the linearized FPEs are time-dependent, even if the non-
linear coefficients itself are time-independent.

Taking into account (i) of the previous remark, many results for solutions to linear
equations can be proven for solutions to nonlinear equations as well. For instance,
we have

Lemma 3.1.4. The results of Lemma hold analogously for solutions to (3.1.1)).

Ezact formulation and proof: Exercise 7.3.

Since is invariant under changing (Lqp,p, )t>0 t0 (La,b i, )t>0 for a Borel
curve dt-version ji of u, the consideration of the linearized equations yields the
following analog of Exercise 3.2.:

Lemma 3.1.5. Let = (p¢)>0 € M be a solution to the NLFPE with initial value
v € My such that esssup, u(R?) < oo and

[(t, ) = aij(t, e, )], [(E2) = bi(t, e, )] € Lito ([0, 00) x RY; ppdt).  (3.1.5)

Then there is a unique vaguely continuous dt-version i of i, and i also solves
the NLFPE with initial datum v.

If in addition the maps from are in L1([0,T] x RY; yydt) for all T > 0,
then ji(RY) = v(RY) for allt > 0 and t — fi; is weakly continuous.

Proof. Consider (put)¢>0 as a solution to (u-¢(FPE). By , Exercise 3.2. applies
and yields a unique vaguely continuous version (fi;);>o with fig = v, solving (u-
(FPE). Hence (fit)i>0 solves the NLFPE. The second part follows immediately
from Exercise 3.2.(ii). O

Motivation: Interacting particle systems. Nonlinear Fokker—Planck equations ap-
pear naturally as the infinite particle limit for interacting particle systems. Let
N €N, B*,i < N, be independent standard Brownian motions on R? and consider
the system of SDEs

dXNT =, XN pN Y dt + V2dBE, t>0,ie{l,...,N}, (3.1.6)

where ]
Ny, _ )
Chb s DI

is the empirical law of the other particles (w.r.t. to ). This system models the
evolution of N particles XV moving in R? subject to an individual Brownian
motion B? (its "internal noise”). Via the dependence of b on Miv . the evolution of
XN+ not only depends on the state XtN’i, but also on all other particles X7, This
gives rise to the name interacting particle system. A typical time-independent case
(with which we continue from now on) is

o) = [ K@= g)dut) = (K + ) (o).
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3 Nonlinear Fokker—Planck equations

K : R4 — RY symmetric, i.e. K(z) = K(—x), and typically lim ;0 K(2) = o0
and K = VU for some U : R? — R. In this case

i Ny 1 i '
b(X ") = mZK(XtN - X",
J#i
One is interested in the infinite particle limit N — oo (also called mean field
limit). Set v}"" := L(X]""), i.e. ¥N solves the linear FPE

Nt = AUt — div ((K = ,uiv’i)l/tN’i), t>0.
Under suitable assumptions on the coefficients, one can often prove the following:

(i) For N — oo, (Viv’i),?o has a weak limit (¢;);>0, which does not depend on 3.

(i) (,uiv’i)go weakly converges to ((;)>o0-
(iii) ¢ solves the NLFPE ;¢ = A¢ — div (K * (;)¢)-

Interpretation: In the particle limit N — oo, the interaction between particles
decays and the motion of all particles becomes statistically identical. In the limit,
one obtains not an interaction equation, but a NLFPE.

This phenomenon is often called propagation of chaos.

3.2 An existence result via a fixed point argument

Let T > 0 and M,([0, 7] x R%) be the linear space of signed measures with finite
total variation. For (u¢)seo, ] € Mp(R?) such that ess SUDP¢e(o,7] |t |(RY) < oo, we
identify (ut)iepo,r) With u = pedt € My([0,T7] x R%).

Recall that M, ([0, 7] x R?) is a normed space with the Kantorovich-Rubinstein
norm

lull = sup [ fda.
féLip,

where Lip; denotes the set of Lipschitz functions from R¢ to R with Lipschitz
constant less or equal to 1 which are also uniformly bounded by 1. Moreover, the
topology generated by this norm on the nonnegative halfspace M;‘([O, T) x R9) is
the topology of weak convergence of measures.

We will use the following fixed point theorem by Schauder.

Theorem 3.2.1. Let X be a normed space, K C X a compact convexr subset, and
F: K — K continuous. Then there is k € K with F(k) = k.

For V:R?— R, Ty < T and g € C*([0,T]) (the space of continuous maps from
[0,T] to Ry ), define Mr, 4(V') as the set of nonnegative measures p = (¢)¢e(o,7y)
in M, ([0, Tp] x R?)) such that

Vidpe < g(t), vt € [0,To).
Ra
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3 Nonlinear Fokker—Planck equations

Let a;j,b; be deﬁned on [0, 7] x M, x R%. We will prove an existence result for the
NLFPE under the followmg assumptions.

(H1). There is Ve C*RYRy), V > 0, limyy 00 V(z) — 00, and maps Ay, Ay :
C*([0,T]) — C*([0,T]) such that for all Ty € (0,7] and g € C*([0,T]): For all
(t,v,z) € [0,T] x M, 4(V) x R?

La,b,uv(tax) < Al [g] (t> + AQ[g] (t)V(.’E)
From now on, we fix V' (but not Ty or g) and write Mr, 4 instead of Mr, 4(V).

Definition 3.2.2. We say a sequence p" = (1 )e[o,1,] in Mr,,q is V-convergent to
B = (Mt)tE[O,To] in MTO’Q if

fim [ fdut—/  d
n— oo

for all f € C(R?) such that hmMHOO
weak convergence.

(H2). For all Ty € (0,T], g € C*([0,T]), v € Mr, 4, the maps

tH&ij(t,Vt,ﬂf), tHbi(tvyhx)

V(m) = 0. In particular, V-convergence implies

are Borel on [0,7p] for each fixed x, locally bounded in « uniformly in (¢,v) €
[0,To] x Mr, 4, and z-locally equicontinuous in (¢,v). Moreover, if y™ V-converges
to p in Mr, 4, then

aij(tﬂ?vx) — aij(ta,utax)7 bz(ta M?v .TZ‘) — bi(tv,utax)a V(t,l‘) € [O7TO} X Rd'

(H3). For all Ty € (0,71, g € C([0,T]) and v € My, 4, a(t,vs, ) is symmetric
and nonnegative definite for all (¢,z) € [0, Tp] x R%.

Theorem 3.2.3. Suppose (H1)-(H3) are satisfied, and let ug € P such that V €
Ll(Rdau())‘

(i) There is Ty < T such that the NLFPE has a weakly continuous probability
solution on [0, Ty with initial datum pg.

(i1) If Ay, Ay from (H1) are constant from C*([0,T]) to CT([0,T]), then Ty =T.

In both cases, this solution (fi¢)ecjo,y) Satisfies

sup / Viduy < oo (3.2.1)
te[0,To] J R4
and
[(t, ) = aij(t, pe, )], [(8,2) = bilt, e, 7)) € Lioe ([0, To] x R pydt).
The proof proceeds via several steps:
(a) Case of a nondegenerate and sufficiently smooth diffusion matrix «;

(b) Degenerate and sufficiently smooth case;

(c¢) General case (i.e. only (H1)-(H3) are assumed).

Due to time constraints, we only give details regarding (a). The remaining parts
are left as reading exercise 8.2.
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3 Nonlinear Fokker—Planck equations

3.2.1 Proof of Theorem [3.2.3L

For part (a), we replace (H3) by the following stronger assumption.

(H3’). (H3) holds, and in addition for each Ty € (0,77, g € CT([0,T]), v € M, 4
and compact U C RY, there is A = A(v,U) > 0 such that a(t,v;,z) > 0 for all
(t,z) € [0,Tp] x R? and

la(t, vy, ) — a(t, v, y)| < A, U)|lz —y|, Vz,y € Ut e [0,To).

Moreover, assume there are finite constants C; = C;(v) such that

W a(t, v, 2)VV ()] < Cy + CoV(z), V(t,z) € [0,To] x R

Let Ty < T, g € C*([0,T]) and v € Mr, 4. Then by [20, Thm.3.1], assumptions
(H1),(H2),(H3’) imply the existence of a unique weakly continuous probability so-
lution ¢ = {(v) to (v-fFPE) on [0, Ty] with initial datum pg such that

(8, 2) = ai;(t, ve, )], [(t, %) = bi(t, v, 2)] € Lioe([0, To] x R Cedt).
Hence we may consider the map
Q : Mz, = Mp([0,To] x RY),  Q(v) :=((v).
Note that @ depends on Tj, g (and V).
Remark 3.2.4. Suppose there is To < T,g € C*([0,T]) such that
(I) Mr, 3 € My([0, Tp] x R?) is convex and compact;
(II) Q is continuous on My, 4 and Q(MTo,g) C Mg, 4.

Then, by Schauder’s fized point theorem, there is a fized point of Q in Mr, 4. This
fixed point is a weakly continuous solution to the NLFPE with initial datum pg and
satisfies the final assertion of Theorem|[3.2.5

We will prove (I)+(II) for a subset Ng, o C Mr, 4, which is obviously sufficient.

Indeed, define Nr, , as the subset of Mr, , consisting of those (u)efo,7,) such
that for all ¢ € C°(R9)

/‘Pdﬂt_/ P dps
Rd R4

where A(Tp, g,¢) = Sup(t,y,a:)E[O,To]XMTO’gXRd{|La,b,l/<p(t7x)‘}' This value is finite
due to (H2).

< A(To, g9,9)|t —s|, Vt, s €[0,Tp], (3.2.2)

Lemma 3.2.5. Every sequence pu" = (11 )iefo,1,] in Nty,g has a weakly convergent
subsequence (u™) with limit p € Nr, 4. Moreover, for each t € [0,Ty], p'* weakly
converges to [it.

The first part of the assertion just means that Nz, , C M, ([0, Tp] x RY) is sequen-
tially compact.
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Proof. Exercise 8.1. O
Corollary 3.2.6. Nr, , C M, ([0, To] x R?) is convex and compact.

Proof. For the convexity, note that is stable w.r.t. convex combinations and
that My, , is convex by definition. Since the topology of M, ([0, 7] x R?) is induced
by a norm, a subset M C M ([0, Ty] x R?) is compact if and only if it is sequentially
compact. The latter holds for Nz, ; by the previous lemma. O

Lemma 3.2.7. If a sequence p™ weakly converges to u in N, 4, then p" V-converges
to p.

Proof. First note that uj* weakly converges to u; for all ¢t € [0,Tp]. Indeed, let
t € [0,7p]. By Lemma each subsequence p™ has a further subsequence p™'*
such that u;''* weakly converges to p;. Hence, ui* weakly converges to ju.

Also note: Since g is bounded on [0,7] and there is ¢ > 0 such that V(z) > o
for all x € RY, it follows that supueMTOYg{ut(Rd),t € [0,T5]} < ¢o < oo, with
co = |glooinfrera V(z)] !

Let now f € C(R?) such that lim| 400 % = 0. Set h(x) := ‘];((?), ie. h €

Co(R?) (the set of continuous functions vanishing at infinity). Hence, for ¢ > 0,
there is ¢ € C.(R?) with |h — 1|o < e. Then

‘/ rany— [ g ='/ Wy~ [ v d
R Rd Rd Rd

<'/ wVaur - [ oV du
Rd Rd

Since ¥V € Cy(R?), u?* — u; weakly and e > 0 was arbitrary, the claim follows. [

+ 2€(g|oo-

Lemma 3.2.8. If Q(Np,4) € Nr,,4 for some To < T, g € CT([0,T)), then Q is
continuous on Nt 4.

Proof. Since the topology on N, , € My([0,Tp] x R?) is induced by a norm, it
suffices to prove sequential continuity. So, let u™,p € Np, 4 such that p” — u
weakly, and set (" := Q(u"). Since (™ € Ny, 4, for any subsequence of (", Lemma
3.2.5| yields a further subsequence ¢"*' with limit { € N, 4. A priori, this limit
depends on {ng;}, but we will show ¢ = Q(u), which then implies that " weakly
converges to Q(u). We now denote ("™t by (™. Lemma also implies the
weak convergence (' — (; for all t € [0,7p]. Moreover, Lemma implies V-
convergence of u™ to u.

Let t € [0,To). By (H2), the maps = +— a;;(t, puy, ) converge pointwise to
a;j(t, e, ), are locally in x uniformly in n bounded and locally in z uniformly
in n equicontinuous. Hence, by the Arzela-Ascoli theorem, they converge locally
uniformly. The same is true for the convergence of b;(t, u}', x) to b;(t, e, x).

Next we show ¢ = Q(u). Let p € C2°(R?). Then, since Q(u") = (", we have

t
[oedr=[ e[ [ Lopweicas el
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We have
/ LapumpdCd = / (Lab,un® = Lab,up) dC3 + / LapupdC,
Rd Rd Rd
where the first summand on the RHS converges to 0 as n — oo and the second one

converges to fRd L, dCs. Since |Layp un(t, )| < A(To, g,¢) < 0o, we can apply
Lebesgue’s dominated convergence theorem to obtain

t t
lim // Layb,ungodggds:// Loy updQds.
n—oo Jo JRd 0 JRd

Now the weak convergence (' — (; for all ¢t € [0, Tp] yields the claim. O

The next lemma is the final preliminary step for finding suitable T, and g to
apply the previous lemma.

Lemma 3.2.9. Suppose v € Np, 4, ¢ = Q(v). Then, for all t € [0,Tp],

[ v <slal®)+ Rol®) | Vo
R4 Rd
where
Rlgl(t) = exo ([ halal(s)ds). Slal(0):= Rigl(0) [ Malol(o)as.
Proof. Let v be as in the assertion and 7,, € C*°(R;) such that 0 < 7/, (x) < 1,

nr < 0,np(z) =xif e <m—1, nu(x) =m if x > m. Recall that by definition ¢
satisfies for all ¢ € C2(R?)

t
/ gpd(tf/ @duoz// LoppdCeds, Vte[0,Tp).
Rd Rd 0 Jrd

Choose ¢(x) := 1, o V(x) — m, and note
La vt ) = 10, (V(2)) La,p o V(E 2) + 11, (V(2))alt, v, 2) VV () - VV (2).

Therefore

t
/ Vd(té/ nm(V)dCtg/ Vd,qur/ / Mo (V(2)) LapV (s, ) ds(x)ds.
V|<m—1 Rd Rd 0o JIvigm

Since 7}, < 1 and since (H1) entails

/Ot /Vlgm Loy, V(s,x)dsds < /Ot <A1[g](s) + As[g](s) /V|<m VdCs)ds,

we arrive, by letting m — oo, at

/RdVdCt < /Rd"dﬂw /0 t (Al[g](s)+A2[g](s) /R dVdCs)ds.
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Now Gronwall’s lemma yields

(4dvﬂk<{A;VdM)%éaMwKQ@}mp(Aith@@),

which is the claim. O

Finally, for both (i) and (ii) of the theorem, we find Tp < T and g € C*([0,T])
such that Q(Nrg,,4) C Npy g

Corollary 3.2.10. There is Ty < T and g € CT([0,T]) constant and strictly positive
such that Q(Nr,,g) € Nry,g. Moreover, if the mappings Ay and Ay are constant,
then one can choose Ty = T.

Proof. By the previous lemma, we have for any v € Np, 4, ( = Q(v), Ty < T, g €
C*([0,77)
[ Vg <siao+Rio) |V dro.
Rd Rd
For any choice of g, note that S[g|(t) — 0 and R[g](t) — 1 ast — 0. Set g :=
2 [za V dpo + 1 and choose Ty = Tp(g) such that S[g](t) < 1 and Rlg](t) < 2 for all
t €10,Tp]. Then

/ VG < g(t), Ve[0T
Rd

So, Q(Nry,g) € Mr, 4, and the claim follows, since is fulfilled for every
element in the range of Q.

For the second part, first note that S and R do not depend on g, since they are
functions of Ay, Ay, which are now independent of g by assumption. Set

o(t) = s (S(t)+R(t) /R dVdMo), vt € [0,7].

Then, obviously [p. V d¢; < g(t) for all t € [0,T]. Hence, similarly as above, we
conclude Q(Nr4) C Npg. O

We can now complete the proof of Theorem [3.2.3] as follows:

For (i) and (ii) of the assertion, consider Ty and ¢ as in the previous corollary,
respectively, such that Q(Nr, 4) € Nr, 4. By Lemma () is continuous on
Nr,.4. Since Corollary implies that Np, 4 is a convex and compact subset of
the normed space My ([0, 7p] x R?), we may apply Schauder’s fixed point theorem
to obtain a fixed point 1 = (pt)iejo, 7] € Nro,g of @, ie. Q(u) = p. As explained
in Remark 11 is the solution from the assertion. p € Nr, 4 yields (3.2.1). O

3.3 McKean—Vlasov SDEs

Consider coefficients a;j,b; as in the beginning of Subsection 3.1} let o : Ry x
P x R¢ — R*? be such that %O’OT = a pointwise, and let B denote a standard
d-dimensional Brownian motion.
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In this section, we consider the following SDEs related to the measure-dependent
coefficients b and o

dXt = b(t, Xt7»CXt)dt + O'(t,Xt,,CXt)dBt, t 2 0. (331)

Such equations are often called McKean—Viasov SDEs or distribution-dependent
SDFEs, short DDSDFEs. In contrast to the classical "linear” case, here the drift
vector and diffusion matrix depend not only on the current position, but also on
the distribution of the solution.

For a partial literature overview on DDSDEs, see Exercise sheet 9.

Motivation: Interacting particle systems, continued. Consider the interacting par-
ticle system from Section In the infinite particle limit, one can often prove
xNi N2 ¥ for every 4 in a suitable sense, and that X solves (3.3.1). So,
McKean—Vlasov SDEs model the evolution of a(ny) particle in the infinite-particle
limits of interacting particle systems.

The following definition is completely analogous to the non-distribution depen-
dent case.

Definition 3.3.1. A weak solution to is a triple, consisting of a filtered
probability space (2, F, (Ft)i>0,P), a d-dimensional standard (F;)-Brownian mo-
tion and an (F;)-adapted R¢valued stochastic process X = (Xt)t>0 on Q such that
(t,w) — b(t, Xt(w),Lx,) and (t,w) — o(t, X¢(w),Lx,) are B(R;) ® F-measurable,

T
E{/ bt X0, )| + ot X1, £x, )] < 00, VT >0,
0
and P-a.s.
t t
X, = X, +/ b(s, Xs, £x, )ds +/ o(s, X, £x.)dBs, ¥t > 0.
0 0

As in the non-distribution dependent case, we call Lx, the initial condition (or
datum) of X.

Solutions are weakly unique for initial condition o, if Lx, = po = Ly, implies
Lx = Ly for any weak solutions X, Y.

It is obvious how to extend the previous definition to initial times s > 0.

As for nonlinear Fokker—Planck equations, one can also consider linearized DDS-
DEs, i.e. one first fixes a curve t — 1, of probability measures in the coefficients
and then studies the non-distribution dependent SDE with coefficients (¢,z) —
b(t,ve, x), o(t, v, z). We denote this SDE by (v-¢SDE).

However, the name linearized DDSDE is misleading, as the coefficients are typi-
cally nonlinear in z. Equation (v-(SDE) is equivalent to the system

dXt = b(t,Xt,LXt)dt+O'(t,Xt,LXt)dBt,
LXt = V4, Vi 2 0.
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Remark 3.3.2. It is straightforward to check that any weak DDSDE-solution X is a
weak solution to (v-tSDE) with v, := L, .

One can also consider the distribution-dependent martingale problem (also called
nonlinear martingale problem) associated with the DDSDE , and one has
the same equivalence of existence and uniqueness of weak solutions to and
solutions to this nonlinear martingale problem as in the "linear” case ( Exercise 9.1).

From DDSDEs to NLFPEs. As might be expected, the relation from (3.3.1)) to the
NLFPE (3.1.1)) is similar to the "linear” case.

Proposition 3.3.3. Let X be a weak solution to (331). Then, p = (p¢)i>0, pe =
Lx, is a weakly continuous probability solution to the NLFPE with coefficients b
and a, where a = %UJT pointwise. Moreover, a;;(t, jit, ), ,bi(t, ue, z) € L*([0,T] x
R%; yidt) for all T > 0.

Proof. Exercise 9.2. O

In particular: One method to construct weakly continuous probability solutions
to NLFPEs is to first solve the corresponding DDSDE and then consider the curve
of one-dimensional time marginals of the solution of the latter. There is, of course,
a list of further methods to prove existence and uniqueness for DDSDEs, but we
will not discuss such results here, except for one classical result below. Please see
Exercise sheet 9 for literature on results in this direction.

Well-posedness under Wasserstein-Lipschitz- and monotonicity assumptions. Con-
sider for p € [1, 00) the p- Wasserstein space

Pp = {CE?: /Rd |z|? d¢(x) <oo}

and, for (,v € P,, the p-Wasserstein distance

wicn = ot ([ amapanen)

AeC((wv)

where C((,v) is the set of all couplings between ¢ and v. A coupling between ¢
and v is any Borel probability measure A on R? x R? such that Ao (7!)~! = ¢ and
Aon?)~t =wv. C(¢v) is non-empty, since ( ® v € C(¢,v). Here we denote by
7t R? x R? — RY the projection on the i-th component.

The spaces (P,, W),) are complete (!) metric (!) spaces and are used frequently
in the study of DDSDEs and other aspects of stochastic analysis.

Consider p > 1, product-measurable coefficients 0;;,b; defined on R x P x R?
with the following assumptions. P, is always equipped with the topology induced
by W,

(A0) b(t,,-) is continuous on P, x R? for all ¢ > 0.
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(A1) EldKl, K, € C(R4, Ry ) non-decreasing such that for allt > 0,(,v € Pp,z,y €
R

lo(t,¢,2) — ot,v,y)|* < Ki(t)e -y + K2 ()W (¢, v)*.

(A2) 2(b(ta Cvx) - b(tv v, y)) : (J? - y) < Kl(t)|x - y|2 + KQ(t)WI)(Ca V)‘ZE - y|
(A3) b is bounded on bounded sets in Ry x P, x R%, and
[b(t, ¢, 0)|P < K1 (t) (1 +¢(]- ),

where ((| - [P) = [qa [2]P d{(z).

Theorem 3.3.4 (Thm.2.1 from [21]). Assume there is p > 1 such that (A0)-(A3)

are satisfied. If p < 2, additionally assume Ko = 0. Then for every initial datum

o € Py, the DDSDE has a unique weak solution X (1) with Lx, € Py, for allt > 0.
Moreover, if pig € Py for ¢ = p, then

]E{ sup |X(u0)t|q} < oo, VYT >0.
t€[0,T)

Finally, there is ¢ € C(Ry,Ry) non-decreasing such that
Wy (£x(0): L))" S Wp(Gv) o ¥ vt > 0.

Remark 3.3.5. Under assumptions (A0)-(A3) one can actually prove that solutions
are probabilistically strong and strongly (i.e. pathwise) unique, see [21|] for details.

3.4 Superposition principle: nonlinear case

Unless stated otherwise, the results of this section hold for any initial time s > 0
instead of 0. Analogous to the linear case, we have the following superposition
principle-result for nonlinear FPEs.

We refer to (3.1.1)) and (3.3.1) as "the NLFPE” and "the DDSDE”, respectively.
For the following result, see [4, [5]

Theorem 3.4.1 (Superposition principle: nonlinear case). Let u = ()0 be a
weakly continuous probability solution to the NLFPE (3.1.1) in the sense of Defini-
tion [31.1] such that

[(t, ) = bi(t, g, )], [(t, ) = agi(t, g, )] € L0, TIxRY; pydt), VT > 0. (3.4.1)

Then there is a weak solution X to the corresponding DDSDE (3.3.1) such that
Lx, = for allt > 0. In particular, X and p have the same initial condition.

Remark 3.4.2. (i) The assertion can equivalently be formulated via the corre-
sponding nonlinear martingale problem instead of the DDSDE, compare The-

orem[1.3.0
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3 Nonlinear Fokker—Planck equations

(i) Note that there is no reqularity assumption on the coefficients, neither in their
space- or measure-argument. In particular, the theorem applies to coefficients
of Nemytskii-type.

(#ii) The integrability assumption can be weakened to

[(t, :ZZ) N |a2J (tvﬂtax” + |b(ta His SU) xu e Ll([O,T] « Rd;utdt), YT > 0.
1+ |22
Proof of Theorem[3.4.1. (ut)t>o0 is a solution to (u-¢FPE) and, by assumption, sat-
isfies with coefficients (t,z) — a;;(t, pue, ) and (¢, ) — b;(t, e, ). Hence
by Theorem there is a weak solution to (u-¢SDE) X with Lx, = pe, t = 0.
Therefore, X solves the DDSDE, which yields the claim. O

As in the linear case, the dual statement gives a uniqueness criterion for the
NLFPE:

Corollary 3.4.3. If there is at most one weak solution to the DDSDE with initial
datum (, then there is at most one weakly continuous probability solution p to the
associated NLFPE with initial condition { satisfying

T
/ / @i (t, po, )| + 03 (t, e, )| dpydt < 0o, VT > 0.
0o Jre

Proof. By Theorem [3.4.1] any two such NLFPE-solutions can be lifted to a weak so-
lution to the associated DDSDE. By assumption, in particular the one-dimensional
time marginals of these solutions coincide, which yields the claim. O

It is left as Exercise 10.1. to write down explicitly the corresponding DDSDEs
for the NLFPE-examples from Section [3.1]

It is a natural question whether Proposition [1.3.9| extends to the nonlinear case.
This is the content of the next result which shows the importance of the linearized
equation associated with a NLFPE.

Proposition 3.4.4. Let uy € P. Assume:

(i) The NLFPE has a unique weakly continuous probability solution p with initial
condition L.

(ii) The linear FPE (u-£FPE) has a unique weakly continuous probability solution
for every initial condition (s,d,).

Then weak solutions for the DDSDE with initial condition ug are unique.

Proof. Let X and Y be weak solutions to the DDSDE with initial condition .
By Proposition 3.3.3] u! := (£x,)i>0 and p? := (Ly,)i>0 are weakly continuous
probability solutions to the NLFPE with initial condition po. Hence, the assumption
implies p’ = p, i € {1,2}, where p is the solution from (i). So, X and Y are weak
solutions to (u-¢SDE). So, by Propositions and the claim follows. [
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Remark 3.4.5. Let X be a weak solution to the DDSDE with initial condition g
and denote by (Qr)zcre the disintegration family of Lx w.r.t. my. In contrast to
the linear case (see Lemma , it is not true in general that for pg-a.e. x the
measure Q, is a solution law to the same equation as X. In fact, considering X as
a solution to its own linearized SDE, it follows from Lemma (i) that po-a-e.
Q. is a solution law to this linearized SDE. Since in general Lo, 1) # Lx, (unless
1o is a Dirac measure), the latter equation is not the same as the original DDSDE.

Therefore, the uniqueness of weak solutions to the DDSDE for all Dirac initial
data does not imply weak uniqueness for all initial data. Note that in Proposition
this was proven in the linear case.

DDSDEs and Markov processes. In Theorem [2.2.2] we particularly proved the fol-
lowing: If a ”linear” (i.e. non-distribution dependent) time-homogeneous SDE has
a unique weak solution law P, for all initial data &,, * € R?, then (P,),cpa is a
Markov process (in the canonical model). For the proof, we heavily used the sta-
bility of the associated linear martingale problem w.r.t. disintegration, i.e. Lemma
which — as said in the previous remark — fails in the case of a distribution-
dependent SDE/a nonlinear martingale problem. As a consequence, we have:

Fact. The family of weak solution laws (P, ),cre of a weakly well-posed DDSDE
is, in general, not a Markov process.

One possible solution is to assume that for every v* = (V¥);>0, V¥ := Pyom; !, the
SDE (v*-¢SDE) is weakly well posed. Then, by Theorem there is a family of
Markov processes (Py),cr¢, where P denotes the unique weak solution law to (v*-
¢SDE) with initial condition ¢,. This way, each P, is a member of a Markov process,
namely P, = P7. The issue with this ansatz is the additional assumption on the
well-posedness of the family (!) of linearized SDEs and, even more, the fact that
the family of families (Py),cra, = € R?, contains a lot of irrelevant “information”
with regard to (Py)cga.

We will present a different, more suitable, solution later on.
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equations

Let a;5,b; : Ry x P x R% — R be such that a = (@i5)ij<a is pointwise symmetry
and nonnegative definite, and consider our usual NLFPE

81‘/#25 = 8123 (a’ij (t7 Ht, I)Ht) —div (bz (t7 Ht, x)ﬂt) (401)

For (s,{) € Ry x P, denote by S; and S, ¢ the sets of its weakly continuous prob-
ability solutions from time s and the subset of those solutions with initial datum
(s, ), respectively.

In this chapter, we address the following question: Assume |Ss¢| > 1 for all
(5,0) € Ry x P. Is there p*° € Sy ¢ such that (u*°)ser, cep has the flow property,
i.e.

5,¢
uf’czu:”” , YO<s<r<t,leP?

This is the same notion of flow as in (2.1.1)). We call such a family a flow selection
for (4.0.1).

We will ask the same question for an a priori chosen subset of initial data Py C P.
In this case, one also has to check that the flow leaves Py invariant.

Remark 4.0.1. (i) If |S;¢| = 1, the family of unique elements u*° € Ss ¢ has the
flow property (Ezercise 10.2). Note that this is not true if we consider the
case of 'non-Markovian’ coefficients, i.e. when a(t) and b(t) depend not only
on (ue, z), but on ((tir)r<t, ) for a solution p.

(i) The importance of a flow selection for (4.0.1)) will become apparent in the next
chapter.

Here we present two very different methods to give positive answers to this ques-
tion: In Section we construct a family of solutions with the flow property; in
Section we select solutions pu®¢ € S such that this selected family has the
flow property.

4.1 Crandall-Liggett semigroup-method
An excellent reference for the contents of this section is the monograph [2].

4.1.1 Accretive and dissipative operators in Banach spaces

Let X be a Banach space with norm |- |x. We simply write | - |, if no confusion
with the standard Euclidean norm on R can occur. By I we denote the identify
operator, I : X — X, Ix = x.
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4 Flow selections for nonlinear Fokker—Planck equations

Definition 4.1.1. (i) An operator (4, D(A)), A: D(A) C X — X is called accre-
tive, if

|z —y| < |z —y+ ANAzx — Ay)|, VA >0,z,y € D(A). (4.1.1)

(ii) An accretive operator is called m-accretive, if R(I + AA) = X for all A > 0,
where R(I + AA) denotes the range of I + AA : D(A) C X — X.

(iii) (A, D(A))is called quasi m-accretive, if there is w € R such that (A+wl, D(A))
is m-accretive.

(iv) (A, D(A))is called dissipative, m-dissipative, quasi m-dissipative, if (—A, D(A))
is accretive, m-accretive, quasi m-accretive, respectively.

“accretive’ = dt. 'wachsend, zunehmend’.

In fact, one can show that (A, D(A)) is accretive if and only if it satisfies the
inequality from for some A > 0, and m-accretive if and only if it is accretive
and R(I + AA) = X for some A > 0.

Remark 4.1.2. We write Az for A(z), x € D(A), but (A, D(A)) is NOT assumed
to be linear. In fact, considering nonlinear accretive operators will be essential in
the sequel.

4.1.2 Differential equations in Banach spaces

Let (A, D(A)) be an operator on X, T' > 0, and consider the Cauchy problem

y'(t) = Ay(t), y(0) = yo, (4.1.2)

where yp € X.

The equality is understood in X. This raises two immediate questions: What is
the meaning of 3/(¢)? Second, to solve this equation pointwise, one needs y(t) €
D(A), which is hard (think for instance of X = L?(R%) and A being a differential
operator). There is a theory of strong solutions to such Cauchy problems, where
both questions are taking into account. We will, however, focus on a different notion
of solution.

Definition 4.1.3. Let 7' > 0, ¢ > 0.

(i) An e-discretization of [0,T] is any partition p®(to,...,tn), given by 0 = tp <
t1<...<ty<Tsuchthat T —ty <eand t; —t;—1 <e, i€ {l,...,N}.

(ii) A p°(to,...,tn)-solution to on [0,7] is a piecewise constant function
z : [0,ty] — X whose values z; on (t;_1,t;) satisfy the implicit difference
scheme

zi = (ti —tic1) Az + 2i-1,

for all i € {1,..., N}, and 2(0) := zp := yo.

(iii) For € > 0, an e-approzimate solution to the Cauchy problem (4.1.2]) on [0, T
is any p®(to, ..., tn)-solution for any e-discretization p®(to,...,tn).
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4 Flow selections for nonlinear Fokker—Planck equations

Definition 4.1.4. A mild solution to the Cauchy problem (4.1.2) on [0,00) is a
function y € C([0,00), X) such that for each ¢ > 0 and T > 0 there is an e-
approximate solution z. to (4.1.2)) on [0, 7] such that sup,<r |y(t) — z:(t)| < e.

The usefulness of this solution notion stems from the famous Crandall-Liggett
nonlinear semigroup result:

Theorem 4.1.5 (Crandall-Liggett nonlinear semigroup theorem, cf. Thm.4.1 of [2]).
Let (A, D(A)) be quasi m-dissipative and yo € D(A) (the closure of D(A) in X ).
Then the Cauchy problem (4.1.2)) has a unique mild solution y = y(yo) on Ry, and

it s given by

y(t) = lim (I - EA) Yo, t>0 (4.1.3)
n

n—o0

where the convergence holds locally uniformly in t on R.

Remark 4.1.6. The exponential formula (4.1.3) justifies to also write y(yo)(t) =
exp(tA)(yo), and it is readily seen that S(t,yo) := y(yo)(t) has the (time-homogeneous)
ﬂO’UJ property S(t + s, yO) = S(t7 5(57 yo)); Vtv sz Oa Yo € D(A)

Application to NLFPEs. Consider, for instance, the generalized PME
Oyu = AB(u) — div (DB(u)u), (t,z) € (0,00) x R? (4.1.4)

(see Example (ii) in Section [3.1)) under suitable assumptions for 3, D, B. In partic-
ular: 8 € C?(R), D, B bounded. To treat this equation via the Crandall-Liggett
method, consider the operator (Ag, D(Ap)) on L!(R?), defined by

Ao : D(Ag) € L'(R?) — L'(R?Y), Aoy := AB(y) — div(DB(y)y)
with domain
D(4g) :={y € L'(RY) : B(y) € L{,.(R?), AB(y) — div(DB(y)y) € L' (R")}.

ApB(y) and div(DB(y)y) are taken in the sense of distributions [which requires only
B(y), DB(y)y € Li (R%)], and it is only assumed that their sum is in L!(R%). One
can show (cf. [3])

(i) R(I — A,) = L'(RY), YA > 0;

(ii) There is a restriction (A, D(A)) of (Ao, D(Ap)), i.e. D(A) C D(A4p) and
A = Ag on D(A), such that (i) also holds for A, and (A, D(A)) is dissipative
in L'(R%);

(iii) D(A) = L'(R%), where the closure is taken in L'(R%).
So, Theorem implies the existence of a unique mild solution u = u(ug) for

u'(t) = Au(t), y(0) = uo (4.1.5)
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4 Flow selections for nonlinear Fokker—Planck equations

on (0,00) for all ug € L*(R%). In particular, u € C(R,, L'(R%)). One can also
show: u is a weakly continuous solution to in the sense of Definition
u>0if ug > 0; |u(t)|pr = |ug|ps for all ¢ > 0. By Remark [L.1.6] {u(uo)}uyerr has
the flow property in L*(R%).

Conclusion: Posing as a nonlinear evolution equation in L!(R?), the
Crandall-Liggett semigroup approach yields a family of weakly continuous prob-
ability solutions for every L' N P-valued initial datum, and this family has the flow
property in L' N P.

Exercise 10.4.: Read the paper [3].

Remark 4.1.7. Note that u(ug) is not necessarily the unique L*-mild solution to
(4.1.4), since we considered a restriction A of Ag. So, we only obtain mild unique-

ness for (4.1.5)), which is not equivalent to (4.1.4). Under stronger assumptions on
the coefficients, one can prove m-dissipativity of (Ao, D(Ap)), and in this case, mild

uniqueness for (4.1.4) follows.

4.2 Flow selections

The reference for this section is [15].
We denote by SPs the set of vaguely continuous subprobability measure-valued
solutions p to the NLFPE such that

[(8,2) > (b, e, )], [(6, ) > bilts s )] € Lhe([0,00) x R pydt),
and SP; ¢ its subset of solutions with initial datum ¢ € 8§P.
Definition 4.2.1. {A; ¢}s>0.cesp, As,c C SPs ¢, is flow-admissible, if
(1) (1e)ess € Ase = (W)isr C Arp,, Vr=s20,( €8P

(i) (pe)ezs € Asc and (0¢)er € Arp,, then po, n € Ag ¢, where

Hts if ¢
(o =
(1orn)e {m, it

For each s > 0, we denote by Ay C 8P the set of ¢ for which A, # 0. We
say (s,() is admissible, if { € As.

A family p*¢, s > 0,¢ € Ay is a solution flow to the NLFPE in {As ¢}, if p>¢ € As ¢
and

s
i =t Vi > s,¢ € A, (4.2.1)

Example 4.2.2. The families As ¢ = SP; ¢ and

L _[sPl. ifcew
=0, if¢C¢ P
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4 Flow selections for nonlinear Fokker—Planck equations

are both flow-admissible, where S Psl’ ¢ is the subset of SP; ¢ consisting of probability
solutions. For a third example, denote by SPs<<c the subset of SP; ¢ of curves

consisting of dz-absolutely continuous subprobabivlity measures for all ¢ > s. Then,
for each SP< C M C 8P the family

4. sP%. cem
=0, C¢m

is flow-admissible. This case appears for Nemytskii-type equations and in cases in
which it is known that for each ¢ € 91 solutions from initial datum ¢ are function-
valued at each positive time (also called L'-regularization).

We denote by 7, the topology of vague convergence on 8P. Recall that a topo-
logical space X is Hausdorff, if for any pair of points x,y € X, x # y, there exist
disjoint open sets A, B C X with z € A,y € B. In particular, every metric space is
Hausdorff, but not every Hausdorff space is metrizable.

Theorem 4.2.3. Let (H,T) be a Hausdorff topological space with H C 8P, 7 D
Ty, and let {Asc}sso.cesp be flow-admissible. If each As ¢ is a compact subset
of C([s,00),H) w.r.t. the topology of pointwise convergence, then there exists a
solution flow to the NLFPE in {A,}.

We abbreviate CsH = C([s, 00), H).

Remark 4.2.4. (i) Note that the topology of pointwise convergence on CsH, de-
noted Ty (suppressing the dependence on H and s in the notation), is a rather
coarse topology. For instance, if H is a metric space, then Ty C 14, on CsH,
where T, denotes the topology of locally uniform convergence. Recall that for
ordered topologies T1 C To on a set X any To-compact subset is also T -compact,
Thus, the compactness-criterion in the previous theorem is relatively simple
to check.

(i) Typical choices for H are H = 8P, H = P with 7 = 7,. Another choice
is to choose Ags ¢ as a subset of L?-valued L?-weakly continuous curves and
(H,7) = (L> N8P, T2.w), where T2, denotes the weak topology on L*. This
space is not metrizable, but Hausdorff.

Regarding the proof of Theorem we need the following definition. Set
Qs :=QnN[s,0).

Definition 4.2.5. (i) We call any bijective map £ : N x Qy — Ny an enumeration.
For such ¢ and k € Ny, we write (ng, q) := £ 1 (k).

(ii) For s > 0, denote by (m})ren, the enumerating sequence of N x Qy with
respect to a prescribed enumeration &, i.e. there exist exactly k£ elements
(n,q) in N x Qg with £(n, q) < mj.

Note that for 0 < s < r, the sequence (m})en, is a subsequence of (m})ien,-
Moreover, (CsH,7,;) is Hausdorff, since so is H. A family {f;}ier of bounded
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4 Flow selections for nonlinear Fokker—Planck equations

measurable functions f; : R? — R is called measure-separating, if the equivalence
1 2 . ) 1 2
R L N I
R4 Rd

holds for all ', u? € M?}L. There exists a countable measure-separating family in
C.(RY) (Exercise 11.1).

Proof of Theorem |4.2.5, Let H = {h,,n € N} C C.(R?) be measure-separating, &
be an enumeration, (s, () € [0,00) x 8P be admissible and consider

GS)C cCOH = R, p= (pt)ess / hnmgd:uqmgv
Rd

uy® = sup G5(u),
Iteﬂs,(

My© = (G5 ™M ug)) N Asc

Since 7, € 7 and H C C.(RY), GS’C is continuous on CyH. Furthermore, since (s, ()
is admissible and A, ¢ is nonempty and compact in CsH, M < s nonempty and
compact in C4H as well. Define iteratively for k € Ny

N
GZ+1 :CsH — R, (Mt)t>s = /Rd hnmzﬂ d/“‘qmi+17

5, . s5,¢
Upfq = Sup Gk+1 (1),
/LGM,:"C

MES = (G ) Myt ) n e,

The same assertions as for G5 and Mg are true for Gz’f_l and M,j_fl Since

M;_fl - Mlj’4 and C,H is Hausdorff, we obtain
M5 = ﬂ M,j’c #0

k>0

(Exercise 11.2). When p() = (ugi))t% € M*¢ for i € {1,2}, by construction we
have

1) _ 2
/R i) = /R g )k € No.

s
k

Since {(1ms,qms), k € No} = N x Qs, this yields fhndlh(;l) - fhnduff) for all

(n,q) € N x Qs and hence /1((11) = u,(f) for all ¢ € Qg, because H is measure

separating. Since p") and ©(®) are continuous in the Hausdorff space H, ") = pu(?
follows. Consequently, M*¢ C A, is a singleton, i.e. M®¢ = {u®¢} for some
,us’g S .AS74.

It remains to show that the family {¢*°}s>0.cca, has the flow property. To this
end, let (s,¢) be admissible and 0 < s < r < t. Consider the admissible (!) initial
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4 Flow selections for nonlinear Fokker—Planck equations

condition (r, u$¢) and let ¥ = (7;)¢> be the unique element in M"H° according
to the above selection, i.e. v = ,u’"’“i’c in our notation. We need to show

Ye=pdt, Vi (4.2.2)

Set n:= p®¢ o, v € As . Due to the iterative maximizing selection of the first part
of the proof, we have

5,6
/Rd i gy 2 /Rd P g (4.2.3)

If gms € [s,7), then Nams = Halns ¢ by definition and we have equality in CIf
qmg = 7, then gms = gmy and by the characterizing property of v in .AT u6 and

since (uf’c)te[rm) €A, ¢, we obtain

5,0 < —
/]Rd hnmg d’uqmé h /Rd hnmﬁ d’qug /Rd hn’"g dnqu)’

and hence we have equality in (4.2.3) in any case. Next, consider m{: since (4.2.3)
is an equality, both (uf’c)t>s and (1)¢>s belong to M¢°. Using the characterization

of u®¢ again, we obtain

R e (42.4)

clearly with equality if ¢,s € [s,7). If ge = 7 and gns € [s,7), then m] = mg, and
hence

Rd n7n1 ’LLQnLI / hnvnl 7‘1771 / hn7n1 nqml (425)

by the characterizing property of v, which gives equality in (4.2.4). If gms, gms > 7,
then m$ = mj, m$ = m} and both p*¢ and v are in Mg’”‘rﬁ , which also gives
(4.2.5)). Hence, equality in (4.2.4) holds in any case. By iteration we obtain

/ hy, Sd,uqm 7/ hnm;dnqm;v VEk € Ny,
Rd R °

and hence, since H is measure separating,
py® =mng Vg€ Qs

thus in particular qu’C =1y = 74 for all ¢ € Q,. Since both curves are continuous
with values in H, we obtain (4.2.2]), which closes the proof. O

Remark 4.2.6. The previous proof works for any countable measure separating family
from C.(R%), any enumeration and any dense countable subset of [s,c0) instead of
Qs. The selected flow depends on these choices.
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The iterative selection method from the previous proof allows to also prove the
following characterization.

Proposition 4.2.7. In the situation of the previous theorem, the following are equiv-
alent:

(i) There exists at most one solution flow to the NLFPE with respect to {As ¢ }(s,¢)e[0,00)xSP-
(i) |Ascl <1 forall (s,¢) € Ry x 8P.
Proof. Exercise 11.3. 0

4.2.1 Applications

Recall that a subset A C X of a topological space X is relatively compact, if its
closure is a compact subset of X. In particular, a closed relatively compact set is
compact. For two topological spaces X,Y, the compact-open topology on C(X,Y)
(the space of continuous maps from X to Y') is the topology with subbase

{feC(X,Y): f(K) CO}, K C X compact, O CY open.

For our applications, we will use the following general version of the Arzeld-Ascoli
theorem

Proposition 4.2.8 (Arzela-Ascoli theorem, Thm.47.1 [13]). Let I be an interval and
(Y,d) a metric space. A subset F C C(1,Y) is relatively compact in the compact-
open topology if and only if F is pointwise relatively compact and equicontinuous,
n.e. if

(i) {f(t), f € F} is relatively compact in'Y for allt € T

(i) For allt € I and € > 0 there is § > 0 such that

rel jt—r|<d = supd(f(t), f(r)) <e.
fex

Remark 4.2.9. (i) Let Y (with a fized topology) be metrizable. The topology T,
on CsY 1is independent of the choice of compatible metric on'Y . This follows
from the fact that for any such metric, 1, coincides with the compact-open
topology on C,Y and the straightforward observation that the compact-open
topology on CY only depends on the topology of Y, not on its metric.

(ii) Whether a subset F C CY is equicontinuous generally depends on the choice
of compatible metric on Y. However, the Arzeld-Ascoli theorem asserts an
equivalence between a) relative compactness of F and b.1) pointwise relative
compactness plus b.2) equicontinuity. Since properties a) and b.1) for F are
clearly independent of the choice of compatible metric on Y, it follows that
equicontinuity of a pointwise relatively compact set F is independent of the
choice of compatible metric on Y .

The bottomline of the previous remark for our application is: If A, C CsH
is pointwise relatively compact and we want to prove relative compactness of A, ¢
w.r.t. 75, via Arzeld-Ascoli’s theorem, we may choose any compatible metric on

(H,T).
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Linear equations. Consider the usual linear FPE
Oy by = (‘3% (aij (t, x)pt) —0; (bi(t, x)ut) (4.2.6)

and suppose the coefficients a;;,b; : (0,00) x R — R, 1 < i,j < d, are Borel and
satisfy
Assumption Al.

(A1.i) fOT sup,cpa (|ai;(t, )| + |bi(t,z)])dt < oo, VT >0,i,5 <d.
(Alil) x> a;;(t,z) and x — b;(¢, ) are continuous for dt-a.e. t > 0.

In this case SP; ¢ = SPsl,< for ¢ € P and each curve in SP; ¢ is weakly continuous,
see for instance Exercise 3.2.(ii). Consider

(4.2.7)

W [SPu Litcer
=T 0 | if C € SP\P,

which is flow-admissible by Example [£.2.2]

Proposition 4.2.10. Suppose Assumption Al holds and that SP; ¢ is nonempty for
each (s,¢) € [0,00) x P. Then there is a solution flow for ([4.2.6) in {As¢}s>0.ces9-

Proof. Let (H,7) = (8P, 7,). By Theorem [£.2.3 and Remark (1), it suffices to
prove each A ¢ is a compact subset of CoH w.r.t. 7, so we prove A, ¢ is closed,
pointwise relatively compact and equicontinuous in order to apply Proposition [£.2.8|
Since (8P, 7,) is a compact metrizable space (see in particular Remark (iii)),
pointwise relative compactness follows.

Concerning closedness, since (8P, 7,) is metrizable, also (Cs8P, 7,,) is metrizable,
hence sequential. Thus it suffices to prove that the limit of any 7y,-converging
sequence in A, ¢ belongs to A, ¢. So, let u = (ME”))t>S, n > 1, be a 1y,,-converging
sequence in Ag ¢ with limit u € Cs8P and let ¢ € C2(R%). Due to (Al.ii), we have
Lapp(t) € Co(R?) dt-a.s., hence

/ dLa,bw(t)duin) — | Lape(t)dpe  dt-as.,
R

n—00 Jpd

and by (Al.i), Lebesgue’s dominated convergence theorem gives

¢ ¢
/ / La’bgodu(T")dT — / / Loppdp-d VYt > s.
s Rd n—oo s Rd

Therefore, u € Ag¢.
Regarding equicontinuity, thanks to Remark [£:2.9] we may consider the following
convenient 7,-compatible metric (Exercise 12.1.) on 8P:

/Rd fidG */Rd fidGe

dy(C1,C2) = 22401_1 {

1>1

/\1:|7 4174.268:])7
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where {f;,l € N} =1 F C C%(R?) is arbitrary but fixed and consists of nontrivial
elements such that the closure of & with respect to uniform convergence contains
C.(R%). We choose

. (2 . -
Cr:=1+D;, D;:=(d +d)1gi13{)éd{||82fl”oov 11035 fil oo }-

We obtain for each p € A, ¢ and arbitrary s <t < ¢o:

to
dlpsope) <352 [ [ LanfiOldt 1]
ty

>1

< 224 {/t'z max sup (|ag(t, )| + |b,~(t,x)|)dt}. (4.2.8)

>1 t; 1S6JSd gepd
=

By (Al.i), for any € > 0, there is § > 0 independent of p such that
tlatQ P S, |t1 _tQ‘ < 0 — dv(,utu,uh) e

Consequently A, ¢ is equicontinuous (even uniformly), which completes the proof.
O

With the same proof, one can prove the existence of a solution flow with respect
to Asec = SP,¢ for all ( € 8P (under the assumption that each of these sets is
non-empty). The advantage of the choice is that the corresponding flow
consists of probability solutions.

Remark 4.2.11. Estimate (4.2.8) is independent of the initial measure ¢, so we
obtain even relative compactness of UcepAs .

Nonlinear equations. Consider B((0, 00))®7,®B(R?)-measurable coefficients a;;, b; :
(0,00) x 8P x R? — R, satisfying

Assumption A2.

(A2.) (t,¢, ) > a(t, ¢, x) and (¢, ¢, @) = b;(t, ¢, x) are bounded on (0, 7)) x 8P x R?
for all T > 0.

(A2ii) x> ay;(t,¢,x) and x — b;(t,(, x) are continuous for each ¢ € 8P and dt-a.e.
t>0.

(A2.iii) If ¢, — ¢ vaguely in 8P, then a;;(t, (G, x) — a;;(t, (, x) and b;(t, (n, ) —
bi(t, ¢, z) locally uniformly in z € R? for each ¢ > 0.

Note that (A2.iii) excludes the case of Nemytskii-coefficients.
Let Ag ¢ be as in (4.2.7). As in the linear case, under Assumption A2 we have
SPs¢=SP} forall ¢ €?.

Proposition 4.2.12. Suppose Assumption A2 is fulfilled and SP; ¢ is nonempty for
each (s,() € [0,00) x P. Then there exists a solution flow for the NLFPE in

{Asctszo,cesp-
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Proof. Set (H,7) = (8P, 7,). Asin the linear case, we use the Arzeld-Ascoli theorem
and Theorem and we prove compactness of A, C C,H even with
respect to 7y,. Again, pointwise relative compactness follows from the compactness

of (8P, 7,). Equicontinuity of A, ¢ can be prove exactly as in the linear case, using

(A2.i) instead of (Al.i). For closedness, assume a sequence p(" = (ugn))@s from

As,¢ Tru-converges to 1 = (f¢)e>s in Cs8P. We need to prove

t ¢
(n)
/S /Rd La’b’uin)godur dr n:;/s /Rd Loy, 0 dpydr (4.2.9)

for each ¢ € C?(R%) and t > s. This follows since

(n) _ (n)
L L2 " = il L, 0000

where ¢ (1, f>c0 denotes the dual pairing between f € (Co(R?), ||-||oo) and a finite

Borel measure p, understood as an element in the dual space of Cy(R?). Since T,
coincides with the weak-* topology on the topological dual of Cy(R%), and since
assumptions (A2.ii) and (A2.iii) yield Laﬁ,ui”')(p(t) — Lo p () in (Co(RY), ||| o)
for each t > s, we get

(OFy <,u§n)a La7b7ui”)¢(t)>co — <,uta La,b,/u, @(t)>co'

Now (4.2.9) follows by (A2.i) and Lebesgue’s dominated convergence theorem. [

Nemytskii-type coefficients. Under suitable assumptions on the coefficients, The-
orem [£:2.3] applies also in the Nemytskii-case. For an example, please see Section
4.2.2. in [I5] (Reading exercise 12.2.).
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5 Nonlinear Markov processes

As said at the end of Chapter 3] the family of solution laws to a well-posed DDSDE
does not satisfy the Markov property. Now we present a generalized definition of
Markov processes, tailored to apply to such (and, in fact, much more general) cases.
Thereby, we complete the nonlinear analog of the relations between linear FPEs,
SDES and Markov processes. The main reference for the content of this chapter is
[16].

As before, we write Q, := C([s, 00), R?) (endowed with the topology of locally uni-
form convergence), 77, t > s, for the usual projections on g, and F; , := o(72,s <
7 < r). We also denote by II; : 2, — €, the path projections IT; : w — wj[, o) for
s<r.

5.1 Definition, basic properties, relation to classical
Markov processes

Definition 5.1.1. Let Py C P. A nonlinear Markov process is a family (Ps,C)(s,C)ERJF xPo
of probability measures P; - on B(2,) such that

(i) i = Psco(m) ™t € Ppforall 0 < s<tand (e P
(ii) The nonlinear Markov property holds, i.e. for all 0 < s < r < t, { € Py,
A € B(RY)
PS’C(TF;? S A‘?S’T)(-) = p(SyC)y(TJi(-))(ﬂ-Z € A) PS,C — a.s., (5.1.1)
where p(s.¢).(ry)> Y € R?, is the disintegration-family of Pr,uf.“ wr.t. 7l (ie.
in particular D(s,¢),(ry) € P(Q,) and D(s,¢),(ry) (7‘(': =y)=1).

Note that Q, x B(Q,) 3 (w,C) = Ps¢),(rms(w)) (C) is equal to the regular con-
ditional probability of P, » w.r.t. 7%, restricted to o(n5,u > r) (by identifying the
latter o-algebra with B(,.)) (Exercise 12.3.)

The term nonlinear Markov property stems from the fact that in usual applica-
tions the family {uf’c}ogsgt,ge% is a family of solutions to a nonlinear FPE.

Proposition 5.1.2. The one-dimensional time marginals (¢ = Psco ()™t of a
nonlinear Markov process satisfy the flow property.

Proof. We have for all A € B(R%):

1y (4) = o [Pac(n} € AT )]

. , S
=E, ¢ [p(51<)7(r,7r:)(ﬂl € A)] = PT,M?C (7Ttr € A) =, H (A).
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5 Nonlinear Markov processes

Remark 5.1.3. In contrast to the case of classical Markov processes, it is in general
not true that the marginals ,uf’g satisfy the (time-inhomogeneous version of the)

Chapman—Kolmogorov equations (2.1.3)).

The following proposition shows that the finite-dimensional distributions of the
path measures of a nonlinear Markov process (and hence the path measures them-
selves) are uniquely determined by the family of one-dimensional time marginals

pf,f(x, dz), s <r,x € RY, defined in (5.1.2)) below.

Proposition 5.1.4. Let (P, ¢)(s.c)er, xp, be a nonlinear Markov process. For ¢ €
Po,0< s <r<tandx R, define pif(x,dz) e P by

pi:g (1‘, dz) = P(s,0),(rx) © (Wz)il(d‘z)v (512)

which is uniquely determined for u$¢-a.e. x € R%.  Then for n € Ny, f €
Bp(RH)™ 1) and s <tg < - < ty:

Es,([f(ﬂtsm oo 77Ttsn)]
= /Rd ( . /]Rd < » f(xo,... ,xn)pfiht" (Tp—1, dxn))pfy’ibtnfl(xn,g, dzp_1) ... ),uff(dxo).

Proof. Exercise 12.4. O

Remark 5.1.5. Fven in the case Py = P it is usually not true that pif(x,) =
]P)Tv(sa: o (ﬂ{)_l'

The following result shows that the class of nonlinear Markov processes contains
the class of classical normal Markov processes. Let (Ps.)s>04ere be a classical
normal time-inhomogeneous Markov process and set P, o := f]Rd P, »d¢(z), ¢ € P.

Proposition 5.1.6. (P ¢)s,c)cr, xp 5 a nonlinear Markov process with Py = P.

Proof. We have P, .. = Jga Pry 3% (dy), y — Py (A) is measurable for every

A € Q, and, by normality, P, , is concentrated on {7, = y}. Hence P, ,,y €
R?, is the disintegration family of P, po¢ worto mland thus (5.1.1) holds with

o

D(s,0),(rms()) = Prrs(.), which is the classical Markov property. O

Remark 5.1.7. If {P, ¢}(s.c)er, xp, 5 a nonlinear Markov process, consisting of
solution laws to a DDSDE, its one-dimensional time marginal curves (,uf’c)t%,
pit = s,c 0 (m)™, solve the associated NLFPE, and the curves (pi:f(x7dz))t>r
from are weakly continuous probability solutions to (u*°-(FPE) with initial
datum (r, 6;) for uS-a.e. . The latter follows from Lemma (i) and Corollary
1.5.9

Hence, if for all (5,¢) € Ry x Py equation (u*°-(FPE) has a unique weakly
continuous probability solution for every initial datum (r,x) € Ry x R?, then pi’f,
s < r < t, are the transition kernels of a linear time-inhomogeneous Markov process
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5 Nonlinear Markov processes

{Pf”xg}(,.@)e[sjoo)xw, see Theorem . The family of these processes is related to
the nonlinear Markov process by

P Q,C:/ PESdpst(z), YO<s<r,(eP
Rd

T

(i.e. the RHS is the convex mizture of the path laws of the linear Markov processes).
In this case, Proposition shows that the finite-dimensional marginals of P, ¢
(and hence its path law) are uniquely determined by the transition kernels of a linear
Markov process, which depends, however, on (s, ().

i

5.2 Construction of nonlinear Markov processes

As before, we refer to and the related stochastic equation simply as
“the NLFPE” and "the DDSDE”. We stress that here we do not impose any regu-
larity on the coefficients, i.e. in particular Nemytskii-type coefficients are included
in the theory presented below.

We introduce the following notation [not to be confused with the notation M ¢
in the proof of Theorem m] For (s,() € Ry x P, we denote the space of weakly
continuous probability solutions u to the NLFPE from (s, ) satisfying

(1) = @iy (b iy )], [(F, @) = bilt, e, 2)) € L0, T] x R predt),  ¥T > 0

by M*¢. For a weakly continuous curve 7 : [s,00) € t = 1, € P, we write M
for the set of all weakly continuous probability solutions u to (n-¢FPE) from (s, ()
satisfying for all i,j < d

[(t,2) — aij(t,ne, x)], [(t, ) = bi(t, e, )] € L0, T] x R pedt), VT > 0.

Recall that p is an extreme point of the convex set M;;’C, if u e Ms’c and p =
ap' + (1 — a)u? for a € (0,1) and pt,pu? € M;;’C implies u! = p?. The set of
extreme points of M;’C is denoted by M5

n,ex*

Theorem 5.2.1 (Rehmeier-Rockner-nonlinear-Markov-construction). Let Py C P
and {us7<}(57<)€R+X?O be a solution flow to the NLFPE such that p*¢ € Mi;& o
for each (s,¢) € Ry x Py.

(i) For every (s,{) € Ry x Py, there is a unique weak solution X*¢ to the
DDSDE with initial condition (s, () and one-dimensional time marginals equal

to (ﬂf’g)t%-

(11) {Ps.c}s>0.cePes Psc := Lxs.c, 18 a nonlinear Markov process. In particular,
its one-dimensional time marginals are ,uf’c, 0<s<t, ey

It should be noted that for a solution flow {4*¢}(s ¢)er, x, it holds pic e Py
forall 0 < s <t (e Py
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5 Nonlinear Markov processes

Remark 5.2.2. (i) Assertion (i) does not mean that there is a unique solution
which additionally satisfies the stated marginal-property, but that the subclass
of solutions with this marginal property contains exactly one element.

(i) Note that the theorem does not require any uniqueness for the NLFPE. Of
course, if the NLFPFE is well-posed in Py, its unique solution family has the
flow property, but in the absence of uniqueness, a flow may still be obtained
by the methods presented in the previous chapter.

For the proof, we need the following auxiliary result, which, in view of applica-
tions, provides a more checkable characterization of the extremality condition of the
previous theorem. For a P-valued curve p = (p4)1>s and C > 0 set

‘As,g(/’hc) = {(nt)t}s S C([S,OO),:P) “ M g C/J’IH vt > 3}7 ‘As,g(,u) = U ‘As,g(,uﬂc)7
>0

where continuity is meant w.r.t. the topology of weak convergence of measures.

Lemma 5.2.3. Let (5,{) € Ry x P, n € C([s,00),P) and = (t4)i>s € M;vc. Then

(M N A< ()l =1 <= pe My

n,ex*

By considering coefficients which do not depend on their measure variable, it is
clear that the previous lemma holds in the case of a linear FPE as well.

Proof. Clearly, u € Mﬁ’c N As <(p). First, suppose p ¢ M;:gx, i.e. there are
ptyi € {1,2}, in M3¢ and o € (0,1) such that

pe = apy + (L= a)pf, t>s, (5.2.1)

and p' # p?. Then (5.2.1) implies p* € M,‘?’C NAs <(p), @ € {1,2}, and hence
(M= VA < (m))] = 2.
Now assume p € Mf]:gx and let v € M;?C NAs <(p). Then for every t > s there

is o; : R — R, , B(RY)-measurable, such that v; = g s, and g; < C for all t > s
for some C € (1, 00). Furthermore, for ¢ > s,

1 1 1 1
S 1~ =y (1— =)\,
He CQtﬂt+( OQt)Ht C,Vt+( C') t
where \; := ll_?f * j1s. Clearly the measure ); is nonnegative and satisfies \;(R?) =
(e}
1, and thus (A)>s € Mg’c. Since p*¢ € M;:gx, it follows p; = vy. O

As a further preparation, we need part (ii) of the following lemma. Part (i) is not
used here, but is of independent interest. If two nonnegative Borel measures (7, (o
satisfy (1 < (2 and (o < (1, we write (3 ~ (a.

Note: In the following lemma, by “solution” we mean weakly continuous probability

solutions satisfying (1.3.2)).

Lemma 5.2.4. Consider a linear FPKE with initial datum (so, (o) € Ry x P. Then
the following holds.
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5 Nonlinear Markov processes

(i) If solutions are unique from (so,(p), then solutions are also unique from any
(so0,m) such thatn € P, n~ (p.

(it) If (17°) s, is the unique solution in A, <) from (so,(o), then in
this class solutions are also unique from any (sg,9¢y) with g € B;(Rd),
Jga 9(x) Co(dx) =1, and § < g for some § > 0.

The proof can be found as the proof of Lemma 3.7. in [10].

Proof of Theorem [5.2.1]

We shall need the following auxiliary result, which is taken from [I9], see Proposition
2.6. therein.

Lemma 5.2.5. Let 0 < s <r, P € P(Qs) a solution to a linear martingale problem
with initial time s, and o : Qs — Ry a bounded I .-measurable probability density
(w.r.t. P). Then (oP) o (II3)~! solves the same martingale problem with initial
time r.

We can now prove Theorem [5.2.1

Proof of Theorem[5.2.1. (i) The existence of a weak solution X **¢ to the DDSDE
for each initial datum (s, ¢) follows from Theorem Concerning unique-
ness, note that by assumption and Lemma for each 0 < s < 7, ¢ € Py,
(4*°-¢FPE) has a unique solution from (r, u3¢) in A,. < (u*¢) (this solution is
(M?C)t?r)'

Claim: For any (s,() € Ry x Pg and r > s, solutions to the corresponding

linear martingale problem with one-dimensional time marginals in .ATVS(MS’C)
are unique from (r, p3:).

Proof of Claim: Fix (s,() € Ry x Py, r > s, and let P!, P? be such solutions.
Their one-dimensional time marginal curves (P});>,

Pi= Plo(x) ™,
solve (u*¢-¢FPE) from (r, u%¢), and hence
Pl=pudC Vixr, ie{1,2}. (5.2.2)
For n € N, let
HM = (I by (7} ) | hy € B (R), by > ¢; for some ¢; > 0,7 <ty < -+ < ty},

3, = #H
neN

and note that 3, is closed under pointwise multiplication and (3, ) = B(£;.).
Hence, by induction in n € N and a monotone class argument, it suffices to
prove

Epi[H] = Ep=[H] for all H € H(™ (5.2.3)
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5 Nonlinear Markov processes

for eachn € N. Forn = 1, (5.2.3)) holds by (5.2.2). For the induction step from

nton+ 1, fixr <ty < -+ <t, <ty and functions h;,i € {1,...,n+ 1},

(n+1)

as specified in the definition of H , and set

b 0 SRy, g Mimahi(m)
r + Epl [H;n:lhl(’lra)] ’

where the denominator is greater or equal to II7";¢; > 0. Note that p is
.+, -measurable and

< ¢ < ¢ pointwise for some ¢ > 1, (5.2.4)

ol

(where ¢ depends on h;, t; and n) and Epi[g] = 1 for i € {1,2} by the
induction hypothesis. Since for every f € B; (R?) we have

£ (@P) = | [ T bl ) ) P (T i)
Q.

r

and since the induction hypothesis implies that these terms are equal for
i € {1,2}, it follows that

(ePY)o(m )t =(eP?)o(m )" (5.2.5)

By Lemma the path measures (oP%) o (I} )~%, i € {1,2}, on B(y,)
solve the same linear martingale problem from time ¢, and, by , with
identical initial condition. Consequently, their curves of one-dimensional time
marginals 7' = (9f)i>e, = (0 PY) o (7F) Vise,, i € {1,2}, solve (u**-(FPE).
For any A € B(RY) and t > t,,, we have by

ni(A):/Q o(w)La(m (w)) P'(dw) < e PJ(A) = ey (4), i€ {1,2},

r

for ¢ as in (5.2.4), and consequently n' € Ay, <(u*¢). Similarly, ni(A4) >
%uf’C(A) for all A € B(RY) and t > t,,. In particular, for t = t,,, it follows
that ngn = g’ uff for some measurable ¢g° : R — R, such that % <g' <eg
and fRd g’ d,uff = 1. By assumption, Lemma |5.2.3| and (ii), we obtain
(Ué)t}tn = (77152)752%7 so in particular mlnﬂ =Ny Now we have

Ep: [T Ry (7))
Epl [H?:l hz (’/T;, )]

for i € {1,2}, and conclude
Epl [H?;llhl(ﬂ;rz)] = ]Ep2 [H?jllhl(ﬂ;)],

which gives (5.2.3)) for n + 1, and hence completes the proof of the claim.

Since pu*¢ € Ag 5(1¢), the assertion now follows form the equivalence of the
linear martingale problem and the associated SDE.
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5 Nonlinear Markov processes

(ii) The family (Ps ¢)(s,c)ers x», satisfies
(i) Psc € P() and P, o (m5) "1 = pi for all t > s,
(ii) Ps¢ is the path law of the unique weak DDSDE solution with one-
dimensional time marginals (u; ’C)@S.

To prove the nonlinear Markov property, let 0 < s < r < ¢ and ( € Py.
Disintegrating P, e with respect to 7 yields

P () = /Rd P(s.0). () () 1 (ly) (5.2.6)

as measures on B(,.), where the p5:¢-almost surely determined family D(s,0),(ry)s
y € R?, of Borel probability measures on €2, is as in Definition

By Lemma for pit-ae. y € R prscy (ry) solves the pC-linearized
martingale problem from (r, é,). Hence, for any o € B;(Rd) with f]Rd odusS =
1, the measure P, € P(£,.),

IP)Q = /Rd p(s,(),(r,y) Q(y) d:u’?c(dy)? (527)

solves the same linearized martingale problem with initial datum (r, g u5:°).
Letn € N, s <t <+ <t, <r, h € Bf((R")") such that a™! < h < a
for some a > 1, and let § : R? — R, be the bounded, u$¢-a.s. uniquely
determined map such that

Esclh(nf,...,m )o(m)] = g(nf) Poc—as.

Let g := cog, where ¢y > 0 is such that fRd gdus¢ =1, and let P, be as in
(5.2.7), with g replacing o, with initial condition (r,gu>¢). Also, consider
0:Qs =R, 0:=coh(n,...,n ), ie Es¢[0] =1. Set

B = (0, ) o (IT5) .
Note that g(R%),0(€) C [a~ ey, aco] pst-as., so in particular g us¢ ~ usc.

By Lemma|5.2.5|, also P? solves the same linearized martingale problem with
initial datum (r, gus), since for all A € B(R?)

P%ww%mz/lmﬂmwwmAw>
Q

s

=/ 1A(Wﬁ(w))g(ﬂﬁ(w))Ps,q(dw)=/g(y)uf«’g(dy)-
Qg A

In particular, both one-dimensional time marginal curves (P, o (7)™ !);>, and
(P o (77) 1) >y solve (u**-¢FPE) from (r, g u$°). Moreover,

P? o (70) " Pyo (7)) Saco i, Wt (5.2.8)

60



5 Nonlinear Markov processes

i.e. both these one-dimensional time marginal curves belong to A, <(u*°).
Indeed, (5.2.8) can be seen as follows. For all ¢t > r and A € B(R?),

P o (x7)"1(A) = / 0(w) 14 (3 (1)) Py (dw)
Qg

< coa/ La(mf (w)) P ¢ (dw) = coa,uf’C(A).
Qg
Similarly, by (5.2.6),
Py ()7 (4) = [ Doyt (77 € A)alo) () < aco P, s (7] € 4) = aco i (A)

Hence by the assumption, Lemma and Lemma (ii)
Pyo(nf) P =Po(a)7Y, Vi,
and therefore for t > r and A € B(R?)
Esc[h(m] . ..m Nasea] = co P o (1) "HA) = cg 'P, o (7F) THA)

— ! / Ple.0) (romt oy (TE € A)g(m5 () P ¢ (o)

s

= /Q p(s,<)7(,~77ri(w))(7'r; S A)h(ﬂfl (w), Ce ,ﬂfn (w)) Ps7c(dw).

s

Here we used the o(m;)-measurability of Qs > w = p(s.¢),(rrs(w)) (T € A) for
the final equality. By a monotone class-argument, (5.1.1]) follows.
O

Since the nonlinear Markov property is always fulfilled for s = r (!), the following
corollary follows from the previous proof.

Corollary 5.2.6. Let Py C Py C P and let {NS’C}(s,C)eRer?o be a solution flow to the
NLFPE such that uf’c € Po for all 0 < s < t,¢ € Po (then {n*}(s.c)er, xp, 15 @
solution flow) and ,uf’c € Bo for all 0 < s < t, € Py. Also assume p*¢ € Mij’em
for all (s,¢) € Ry x Py.

Then there exists a nonlinear Markov process (PS,C)(S,C)€R+xTo such that Ps ¢ o
(7)1 = uf’c for every (s,¢) € Ry x Py and t > s, consisting of path laws of weak
solutions to the corresponding DDSDE. Moreover, for ( € Bo, P, ¢ is the path law
of the unique weak solution to the DDSDE with one-dimensional time marginals
(/“L?C)t?s-

A typical application of Corollary is as follows: Py = PN L>®, Py = P, one
has a solution flow {u*} (5 cyer, x» to the NLFPE with p*¢ € (5, L>((8, 00), L>)
(also called L' — L>°-regularization), and for every initial datum (s,¢) € Ry x Bo,
solutions to the NLFPE are unique in (-, L°°((s, T) x R?). From the latter prop-
erty, one can often prove that the corresponding linearized equations (u*<-¢(FPE)
have a unique solution in (V- L>((s,T) x R%) from (s,¢) € Ry x PBo. Then the
extremality-assumption of the corollary is satisfied.
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5 Nonlinear Markov processes

5.3 Applications to nonlinear FPEs and PDEs

Finally, we present some general and explicit cases of NLFPEs to which Theorem

or Corollary apply.

(i) Well-posed equations. If the NLFPE has a unique weakly continuous proba-
bility solution ;¢ with the previously mentioned global in space integrability
condition from every initial datum (s, () € Ry x P, and each linearized equa-
tion (u*¢-¢(FPE) has a unique weakly continuous probability solution from
(s,¢), Theorem applies and yields the existence of a uniquely deter-
mined nonlinear Markov process with one-dimensional time marginals p; ’C,
0<s<t CeP

We stress again that these strong well-posedness results can typically not be
proven for equations with Nemytskii-type coefficients.

(ii) Generalized PME. Consider
Opu(t) = AB(u) — div (DB(u(t))u(t)) (5.3.1)

under the following assumptions.

(B1) B(0) =0,8 € C*(R), 5 > 0.

(B2) B € CYR)NCy(R),B > 0.

(B3) D € L*(R%RY),divD € L2 _(R?), (div D)~ € L>(R?).
(B4)

loc

B4) VK C R compact: Jag > 0 with |B(r)r — B(s)s| < axl|8(r) — B(s)]
Vr,s € K.
For the class of distributional solutions (in PDE-sense), this equation can be
equivalently considered as a NLFPE, see Example (ii) in Section The
following holds: For each (s,{) € Ry x Py, Py := PN L, there is a dis-
tributional solution u*¢ to such that ;¢ = u)*(z)dx is a weakly
continuous probability solution in (V. ; L>((s,T) x R?), and these solutions
have the flow property in Pq. Moreover, u*¢ is the only weakly continuous
probability solution from (s,¢) to (u*¢-¢(FPE) in Ny, L>((s,T) x R%). For
these statements, see [3, Thm.2.2] and [0, Cor.4.2], respectively.
Thus, Theorem applies and gives a nonlinear Markov process {P; ¢ }s>0,cep,
with one-dimensional time marginals densities uf’q, and P, ¢ is the path law
of a restricted-unique weak solution to the associated DDSDE

dXt = B(Ut(Xt))D(Xt))dt+ det’ £/Xt (d(l}) = Ut dz, t 2 S.

Bottomline: The nonlinear PDE-solutions u*¢ have a probabilistic represen-

tation as the one-dimensional time marginal densities of a nonlinear Markov
process, which consists of solutions to the associated DDSDE.
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(iii) Classical PME, measure-valued initial data. For the classical porous media
equation

Ou=A(lu[" ), m=>1,

it was shown in [I4] that for any initial datum (s, () € R4 x P, there is a unique
weakly continuous distributional (in PDE-sense) probability solution u*¢ in
Nrsres L°((7, T) x RY). In fact, it is shown that u*¢ is even L'-continuous
on (s,00). Clearly, the uniqueness implies the flow property for the solutions
t  u(2)da to the corresponding NLFPE, see Example (i) in Section
For ¢ = 04,, u®¢ is the fundamental solution, known as Barenblatt solution,

1
m—1

w0 @) = (= )| (O = ke = ol - ) ) |7 e,

2md
0 is chosen such that fRd ufg(x)dx = 1 for all ¢ > s. The corresponding
McKean-Vlasov equation is

dXt = 1/ 2ut(Xt)m*1dBt, LXt = ’U,t(SC)dIE, t > S, LXS = C (532)

where 0 = gt B = 5,k = alm=1) " ¢+ .= max(f,0), and C = C(m,d) >

Since assumptions (B1)-(B4) are satisfied, for ( € PN L we have uniqueness
of (u**~FPE) from (s,¢) in Nps, L®((s,T) x R?) (compare (ii) above).
Thus, Corollary applies with By = PN L>* and Py = P, and yields a
nonlinear Markov process (Ps.¢)(s,¢)er, xp consisting of path laws P - of weak

solutions to (5.3.2) with one-dimensional time marginals densities u;*.

This way, the famous Barenblatt solutions have a probabilistic interpretation
as time marginal densities of a nonlinear Markov process.

Remark 5.3.1. Corollary first only implies that P ¢ is uniquely deter-
mined if ( € PN L>. However, it can be shown from the formula for the
finite-dimensional marginals in Proposition [5.1.4] that the entire nonlinear
Markov process {Ps ¢ }sso.cep is uniquely determined by {u}s>0 cep-

For further applications, including the 1D-Burgers equation and the 2D Navier—
Stokes equations in vorticity form, please see [16].
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