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1 Linear Fokker–Planck equations

1.1 Probabilistic basics and motivation

Set R+ := [0,∞), N := {1, 2, 3, . . . } and N0 := {0} ∪ N. The distribution of a
random map X is denoted by LX .

We begin by repeating the definition of solutions to the stochastic differential
equations on Rd

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (SDE)

where the drift- and diffusion-coefficients

b : R+ × Rd → Rd, σ : R+ × Rd → Rd×d

are assumed to be product-measurable w.r.t. the usual Borel σ-algebras.

Definition 1.1.1. (i) A (weak) solution to (SDE) is a triple consisting of a filtered
probability space (Ω,F, (Ft)t>0,P), a d-dimensional standard (Ft)-Brownian
motion B and an (Ft)-adapted Rd-valued stochastic process X = (Xt)t>0 on
Ω such that

E
ï ∫ T

0

|b(t,Xt)|+ |σ(t,Xt)|2 dt
ò
<∞, ∀T > 0

and P-a.s.

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, ∀t > 0.

(ii) If LX0
= µ, the weak solution is said to have initial value µ.

We often simply say ”X is the weak solution”.

To consider an initial time s > 0, replace 0 in the above definition by s. One then
says X has initial condition (s, µ).

The law of a stochastic process X with continuous paths on a probability space
(Ω,F,P) is its distribution on C+Rd := C(R+,Rd), i.e. the image measure LX =
P ◦X−1 of X : Ω→ CdR.

Remark 1.1.2. (i) More generally, for any m ∈ N, one may consider σ with values
in Rd×m and m-dimensional Brownian motions. We will, however, restrict
to the case σ ∈ Rd×d.
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1 Linear Fokker–Planck equations

(ii) The law of a weak solution solves the martingale problem associated with b
and 1

2σσ
T and, vice versa, for every solution P of the latter, there is a weak

solution to (SDE) with law P . Thus, we will often identify weak solutions,
their laws and solutions to the associated martingale problem.1

From a probabilistic point of view, the following proposition is one main motiva-
tion to study Fokker–Planck equations. Set a = (aij)i,j6d, aij := 1

2 (σσT )ij . a(t, x)
is symmetric and nonnegative definite for all (t, x) ∈ R+ × Rd.

Proposition 1.1.3. Let X be a weak solution to (SDE). Then the probability measure-
valued weakly continuous curve of one-dimensional time marginals

t 7→ LXt =: µt, t > 0

satisfies∫
Rd
ϕ(x) dµt(x) =

∫
Rd
ϕ(x) dµ0(x)+

∫ t

0

∫
Rd
aij(s, x)∂2

ijϕ(x)+bi(s, x)∂iϕ(x) dµs(x)ds

for all t > 0 and ϕ ∈ C∞c (Rd) (the latter denotes the space of smooth real-valued
functions on Rd with compact support).

Proof. Exercise 1.1.

The distributional formulation of the previous equality is

∂tµt = ∂2
ij

(
aijµt

)
− ∂i

(
biµt

)
,

which, as we shall see, is a Fokker–Planck equation for Borel (probability) measures
on Rd. If

LXt = %t(x)dx

and % : R+ × Rd → R and aij , bi are sufficiently regular, then

∂t%t = ∂2
ij(aij%t)− ∂i(bi%t)

holds pointwise, i.e. in the classical, strong sense.

Hence: Marginals of SDE-solution solve a deterministic PDE for measures!

Spaces of measures, vague and weak topology For a topological space X, M+
b (X)

denotes the set of nonnegative finite Borel measures onX. We write M+
b := M+

b (Rd)
when no confusion about the dimension d can occur. Denote by Cc(X) and Cb(X)
the spaces of continuous functions g : X → R which are compactly supported and
bounded, respectively. Let now X be a metric space.

Definition 1.1.4. (i) The vague, respectively weak topology on M+
b (X) is the ini-

tial topology of the maps µ 7→
∫
X
f dµ for all f ∈ Cc(X), respectively

f ∈ Cb(X), i.e. the coarsest topology τ on M+
b (X) such that each of these

maps is continuous between (M+
b (X), τ) and R.

1We briefly review the definition and basic theory of martingale problems later on.
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1 Linear Fokker–Planck equations

(ii) (µn)n∈N converges vaguely (weakly) to µ in M+
b (X), if it converges in the

vague (weak) topology, i.e. if
∫
X
f dµn

n→∞−−−−→
∫
X
f dµ for all f ∈ Cc(X)

(f ∈ Cb(X)).

Remark 1.1.5. (i) µn
n→∞−−−−→ µ weakly =⇒ µ(X) = µn(X) for all but finitely

many n ∈ N.

(ii) Wrong for vague convergence: X = R, µn = δn, µ = 0 (the trivial measure),

then µn
n→∞−−−−→ µ vaguely, µn(R) = 1 for all n ∈ N and µ(R) = 0.

(iii) Let X = Rd. The set of subprobability measures

SP := M+
b ∩ {µ : µ(Rd) 6 1}

is the positive hemisphere of the unit ball in Cc(Rd)
′

(the closure of Cc(Rd)
w.r.t. the topology of uniform convergence), which is weak-∗-sequentially com-
pact. In particular: Every sequence of subprobability measures has a vaguely
convergent subsequence. This is not true when ”weakly” replaces ”vaguely”.

(iv) M+
b and P (the set of Borel probability measures on Rd) with the weak topology

and SP with the vague topology are Polish.

1.2 Definition, existence, uniqueness

Let d ∈ N and consider Borel coefficients

b = (bi)i6d, a = (aij)i,j6d, c, bi, aij , c : R+ × Rd → R.

We always assume that a(t, x) is symmetric nonnegative definite for all (t, x). The
class of Fokker–Planck equation (FPE) we are going to study is

∂tµ = ∂2
ij

(
aijµ)− ∂i

(
biµ
)

+ cµ. (FPE)

These are linear equations, since the coefficients do not depend on the solution.
Setting

La,b,c : ϕ 7→ La,b,cϕ(t, x) := aij(t, x)∂2
ij(t, x)ϕ(x) + bi(t, x)∂iϕ(x) + c(t, x)ϕ(x),

a compact way of writing (FPE) is

∂tµ = L∗a,b,cµ,

where L∗ denotes the formal dual of an operator L.

Definition 1.2.1. A locally finite Borel measure µ on (0,∞)× Rd satisfies (FPE) if
aij , bi, c ∈ L1

loc

(
(0,∞)× Rd;µ

)
and for every ϕ ∈ C∞c ((0,∞)× Rd) we have∫

(0,∞)×Rd
∂tϕ+ La,b,cϕdµ = 0.

3



1 Linear Fokker–Planck equations

We always restrict to nonnegative measures µ given by a family of nonnegative
locally finite Borel measures (µt)t>0 on Rd via∫

(0,∞)×Rd
fdµ =

∫ ∞
0

Å∫
Rd
fdµt

ã
dt. (1.2.1)

In order for the integral on the right hand-side to make sense, the measures (µt)t>0

need to be a Borel curve, i.e. t 7→ µt(A) has to be Borel for every A ∈ B(Rd).
We call µ a (sub-)probability solution or a solution with constant mass, if every

µt is a (sub-)probability measure or if µt(Rd) = µs(Rd) for all t, s > 0, respectively.
Depending on context, these conditions may be understood for dt-a.e. t > 0.

Remark 1.2.2. (i) If (µt)t>0 solves (FPE) and (µ̃t)t>0 is a Borel curve of locally
finite Borel measures such that µt = µ̃t for dt-a.a. t > 0, then (µ̃t)t>0 also
satisfies (FPE). Hence solutions are only determined dt-a.s., and a natural
question is whether the dt-equivalence class of a solution contains a vaguely
or weakly continuous representative. As we shall see, this is true under very
broad assumptions.

Definition 1.2.3. A solution (µt)t>0 to (FPE) has initial value ν ∈M+
b , if for every

ϕ ∈ C∞c (Rd) there is a set of full dt-measure Oϕ ⊆ (0,∞) such that∫
Rd
ϕdν = lim

t→0,t∈Oϕ

∫
Rd
ϕdµt. (1.2.2)

In this case, one sets µ0 := ν and considers (µt)t>0 instead of (µt)t>0. The pair
(FPE)+(1.2.2) is the Cauchy problem associated with the FPE.

Clearly, the initial value is unique (Exercise 1.2). Equation (1.2.2) does not imply

vague convergence µt
t→0−−−→ ν, but it does, if Ocϕ = ∅ for all ϕ.

For the case µ = (µt)t>0, the following definition of solution to (FPE) is very
useful.

Definition 1.2.4. A Borel curve of locally finite Borel measures (µt)t>0 solves (FPE)
with initial value ν, if aij , bi, c ∈ L1

loc

(
(0,∞)×Rd;µtdt

)
and for every ϕ ∈ C∞c (Rd)

there is a set of full dt-measure Jϕ ⊆ (0,∞) such that for all t ∈ Jϕ∫
Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,cϕdµsds. (1.2.3)

Lemma 1.2.5. (i) If aij , bi, c ∈ L1
loc

(
[0,∞)× Rd;µtdt

)
, then

lim
τ→0+

∫ t

τ

∫
Rd
La,b,cϕdµsds =

∫ t

0

∫
Rd
La,b,cϕdµsds. (1.2.4)

In this case: Jcϕ = ∅ for all ϕ if and only if t 7→ µt is vaguely continuous on
[0,∞).
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1 Linear Fokker–Planck equations

(ii) If t 7→ µt is vaguely continuous and the first assumption in (i) is strengthened
to aij , bi, c ∈ L1

(
[0, T ] × Rd;µtdt

)
for all T > 0, then (µt)t>0 has constant

mass. Moreover, in this case (1.2.4) holds for all ϕ ∈ C2
b (Rd), the space of

real-valued bounded continuous functions on Rd with uniformly bounded first-
and second-order derivatives.

Proof. (i) The first assertion holds, since the compact support of ϕ implies [t 7→∫
Rd La,b,cϕdµt] ∈ L

1
loc([0,∞); dt), which yields the claim. The second asser-

tion follows from the continuity of the map t 7→
∫ t

0
f(t, x) dµt(x)dt for every

f such that [t 7→
∫
f(t, ·)dµt] ∈ L1

loc

(
[0,∞); dt

)
.

(ii) The first part is Exercise 1.3., the second part follows by a standard approxi-
mation.

The proof of the following result is the content of Exercise 1.4 and can be found
on p.243 in [8].

Proposition 1.2.6. µ given by (1.2.1) satisfies (FPE) with initial value ν in the sense
of Definition 1.2.1 and 1.2.3 if and only if (µt)t>0 satisfies Definition 1.2.4.

We may now reformulate Proposition 1.1.3 by saying that the one-dimensional
time marginals µt := LXt of a weak solution X to SDE are a weakly continuous
probability solution to the Fokker–Planck equation FPE, with c = 0, a = 1

2σσ
T ,

b, and with initial value LX0 (which may be prescribed on the level of the SDE).
Definition 1.1.1 entails∫ T

0

∫
Rd
|aij(t, x)|+ |bi(t, x)|dµt(x)dt = E

ï ∫ T

0

|aij(t,Xt)|+ |bi(t,Xt)|dt
ò
<∞

for all T > 0 and i, j 6 d, i.e. all assertions of Lemma 1.2.5 hold.
This relation between SDEs and FPEs is one main reason why we will mostly be

interested in the case c = 0 and in weakly continuous probability solutions.

Remark 1.2.7. Several generalizations of and related equations to (FPE) have been
studied in the literature, for instance equations for measures on more general state
spaces, e.g. on open subsets U ⊆ Rd, infinite-dimensional spaces and manifolds. A
related class of equations are elliptic FPEs

L∗a,b,cη = 0.

Depending on time, we might briefly touch these aspects during the course of the
lecture. Moreover, we will study nonlinear Fokker–Planck equations. The term
nonlinear refers to coefficients that depend on the solution µ itself.

Equation (FPE), Definitions 1.2.1,1.2.3,1.2.4 and all previous assertions can be
generalized to an initial time s > 0 in the obvious way. In this case, the initial
condition is the pair (s, ν).
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1 Linear Fokker–Planck equations

1.2.1 An existence result

There are many results on the existence of solutions to the Cauchy problem (FPE)+(1.2.2).
Here, we present one result (Proposition 1.2.10 below) whose proof proceeds via
standard arguments for the construction of solutions to PDEs with irregular coeffi-
cients: First, the coefficients and initial datum are approximated by regular ones,
for which existence of solutions is known. Then, one proves uniform estimates of
the corresponding solutions in order to extract a converging subsequence. Finally,
one shows that its limit solves the original equation. We restrict to a finite time
interval [0, T ], i.e. we consider Borel coefficients aij , bi, c : [0, T ] × Rd → R. The
case T =∞ can be obtained by a simple variation. We need the following two basic
results. For their proofs, see [8, Ch.6.3., 6.6.].

Lemma 1.2.8. Assume there are numbers 0 < m < M such that m Id 6 a(t, x) 6
M Id for all (t, x) ∈ [0, T ] × Rd. Moreover, let aij, its first- and second-order
derivatives, bi and its first-order derivatives, and c be bounded and continuous on
(0, T )×Rd and Hölder continuous in x uniformly in t of degree α ∈ (0, 1). Finally,
suppose for some C > 0

|aij(t, x)− aij(s, y)| 6 C(|x− y|α + |t− s|α2 ), ∀(t, x) ∈ (0, T )× Rd.

Then for every probability density %0 ∈ Cb(Rd) there is a subprobability solution
(µt)t∈[0,T ) to (FPE) with initial datum ν = %0dx such that µt = %tdx, [(t, x) 7→
%t(x)] ∈ C1,2((0, T )× Rd) ∩ C([0, T )× Rd), and for dt-a.e. t ∈ (0, T )

µt(Rd) 6 ν(Rd) +

∫ t

0

∫
Rd
c dµtdt.

For the next two results, we denote by U ⊆ Rd an arbitrary ball and by J an
arbitrary set of type [t0, T − t0], t0 > 0.

Lemma 1.2.9. Let µ = (µt)t∈(0,T ) be a solution to (FPE), and assume on every
J×U a is bounded, Hölder-continuous in x uniformly in t and there is m(J, U) > 0
such that m(J, U) Id 6 a(t, x) for all (t, x) ∈ J × U .

Then µt = %t(x)dx, % ∈ L
d+3
d+2

loc ((0, T ) × Rd), and for every J × U and every
neighborhood W of J × U with compact closure in (0, T )× Rd one has

|%|
L
d+3
d+2 (J×U)

6 C̄,

where C̄ depends on d, infW det a, |a|L∞(W ), |b|L1(W ;µ), |c|L1(W ;µ), J, U , W and
µtdt(W ).

The main result of this section is the following proposition.

Proposition 1.2.10. Suppose c 6 0, aij , bi and c are bounded on each [0, T ] × U .
Moreover, assume that for every U there are numbers 0 < m(U) < M(U) such that

m(U) Id 6 a(t, x) 6M(U) Id, ∀(t, x) ∈ [0, T ]× U.
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1 Linear Fokker–Planck equations

Then, for every ν ∈ P, there is a subprobability solution µ = (µt)t∈[0,T ) to (FPE)

with initial datum ν such that c ∈ L1((0, T )× Rd;µtdt) and for dt-a.e. t ∈ (0, T )

µt(Rd) 6 ν(Rd) +

∫ t

0

∫
Rd
c dµtdt. (1.2.5)

The result can easily be extended to the case c 6 c0 for c0 > 0.

Proof. We divide the proof into five steps.
1. Define aij(t, x) = δij , bi(t, x) = 0 = c(t, x) for (t, x) ∈ [0, T ]c × Rd, let ω :

Rd+1 → R satisfy

ω ∈ C∞c (Rd+1), ω > 0,

∫
Rd+1

ω(t, x) dxdt = 1, ω(t, x) = 0 for |x| > 1,

set ωε(t, x) := ε−d−1ω(xε−1, tε−1) for ε > 0, and, for n ∈ N,

anij := aij ∗ ω 1
n

+ n−1δij , bni := bi ∗ ω 1
n
, cn := c ∗ ω 1

n
.

For each n and l, the functions anij , b
n
i , c

n and its derivatives up to order l are

uniformly bounded on Rd+1. Moreover, an(t, x) > n−1 Id for all (t, x) ∈ Rd+1.
Each of the sequences (anij)n∈N, (b

n
i )n∈N, (c

n)n∈N converges in Lp([0, T ] × Uk) for
each p > 1 and k ∈ N, where Uk denotes the ball centered at the origin of radius k,
with limits aij , bi and c, respectively.

Let νn = ηndx, ηn ∈ C∞c (Rd), be a sequence of probability measures converging
weakly to ν, and consider the Cauchy problems

∂tµ
n = ∂2

ij

(
anijµ

n
)
− ∂i

(
bni µ

n
)

+ cnµn, µn|t=0 = ηn. (1.2.6)

By Lemma 1.2.8, for each n ∈ N, there is a subprobability solution (µnt )t∈[0,T ) to

(1.2.6) such that [(t, x) 7→ %nt (x)] ∈ C1,2((0, T )×Rd)∩C([0, T )×Rd), and for dt-a.e.
t ∈ (0, T )

µnt (Rd) 6 νn(Rd) +

∫ t

0

∫
Rd
cn dµns ds. (1.2.7)

In particular, (1.2.4) holds and (1.2.3) is satisfied for every t ∈ (0, T ).
2. By definition of an, we have, independently of n,

an(t, x) > mk+1 Id, ∀(t, x) ∈ [0, T ]× Uk,

where mk+1 = m(Uk+1) is the number from the hypotheses of the proposition
corresponding to the ball Uk+1. In addition, for any k and all sufficiently large n
we have

|anij |L∞([0,T ]×Uk) 6 |a|L∞([0,T ]×Uk+1) + 1,

|bni |L∞([0,T ]×Uk) 6 |bi|L∞([0,T ]×Uk+1), |cn|L∞([0,T ]×Uk) 6 |c|L∞([0,T ]×Uk+1).

Lemma 1.2.9 implies for every k > 2∫
[Tk−1,T (1−k−1)]×Uk−1

%nt (x)
d+3
d+2 dxdt 6 Ck, (1.2.8)

7



1 Linear Fokker–Planck equations

where Ck depends on mk+1 and the right hand-sides of the previous three estimates,

but not on n. Since L
d+3
d+2
(
[Tk−1, T (1 − k−1)] × Uk−1

)
is reflexive, the sequence

(%n)n∈N contains, for every k > 2, a weakly converging subsequence in the latter
space. By the standard diagonal argument, we may consider a subsequence, still

denoted (%n)n∈N, which weakly converges in L
d+3
d+2
(
[Tk−1, T (1 − k−1)] × Uk−1

)
for

every k > 2, to a limit %. Hence dt-a.e. µnt , along the same subsequence, converges

L
d+3
d+2 (Uk)-weakly for every k to µt = %(t, x)dx, hence in particular vaguely.
3. Let ϕ ∈ C∞c (Rd). There is C(ϕ) > 0, independent of n, such that for all

0 6 s 6 t 6 T∣∣∣∣ ∫
Rd
ϕdµnt −

∫
Rd
ϕdµns

∣∣∣∣ =

∣∣∣∣ ∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr

∣∣∣∣ 6 C(ϕ)|t− s|. (1.2.9)

Consequently, for fixed ϕ the functions

[0, T ) 3 t 7→
∫
Rd
ϕdµnt =: fn(t), n ∈ N,

converge dt-a.s. to f(t) :=
∫
Rd ϕdµt. Moreover, (fn)n∈N is uniformly bounded and

equicontinuous, hence the Arzelá-Ascoli theorem implies that every subsequence of
(fn)n∈N contains a locally uniformly on [0, T ) converging subsubsequence.

So, any two subsubsequence limits coincide dt-a.s., hence pointwise (since they
are continuous) on [0, T ). Consequently, (fn)n∈N converges locally uniformly to a
limit equal to f dt-a.s. The dt-exceptional set depends on ϕ and is denoted by T(ϕ).

4. We are now going to prove that µ = µtdt, µt = %(t, x)dx, is a solution as in
the assertion. For ϕ ∈ C∞c (Rd), we have La,b,cϕ ∈ L∞((0, T )× Uk),

sup
n
|Lan,bn,cnϕ|L∞((0,T )×Uk) 6 Ck,

and Lan,bn,cnϕ
n→∞−−−−→ La,b,cϕ in Lp((0, T )×Rd) for every p > 1. Let t ∈ T(ϕ)c, i.e.∫

Rd
ϕdµnt

n→∞−−−−→
∫
Rd
ϕ%(t, x)dx,

and let 0 < s < t. Then∣∣∣∣ ∫
Rd
ϕdµnt −

∫
Rd
ϕνn −

∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr

∣∣∣∣ (1.2.10)

=

∣∣∣∣ ∫
Rd
ϕdµns −

∫
Rd
ϕdνn

∣∣∣∣ 6 C(ϕ)s,

where C(ϕ) is as in (1.2.9). Since

lim
n

∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr =

∫ t

s

∫
Rd
La,b,cϕ%(r, x) dxdr,

letting first n→∞ and then s→ 0 in (1.2.10) yields∫
Rd
ϕ%(t, x) dx =

∫
Rd
ϕdν +

∫ t

0

∫
Rd
La,b,cϕ%(r, x) dxdr.
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1 Linear Fokker–Planck equations

Therefore, µ = (µt)t∈[0,T ) = (%(t, x)dx)t∈[0,T ) is a solution to the Cauchy problem
(FPE)+(1.2.2) with initial datum ν.

5. It remains to prove the additional properties of u claimed in the assertion of
the proposition. Since each νn is a probability measure and due to (1.2.7), we find,
for every φ ∈ C∞c (Rd) with 0 6 φ 6 1 and t ∈ (0, T ),∫

Rd
φdµnt −

∫ t

0

∫
Rd
φcn dµ

n
s ds 6 1. (1.2.11)

Consider φN ∈ C∞c (Rd), 0 6 φN 6 1 such that φN = 1 on UN , and let t ∈⋂
N T(φN )c, i.e. ∫

Rd
φN dµ

n
t

n→∞−−−−→
∫
Rd
φN %(t, x)dx, ∀N ∈ N.

Considering such φN and t in (1.2.11) and letting n→∞ yields∫
Rd
φN%(t, x) dx−

∫ t

0

∫
Rd
φNc u(s, x)dxds 6 1.

Finally, letting N →∞, by Fatou’s lemma we conclude, for dt-a.e. t ∈ (0, T ),∫
Rd
%(t, x)dx−

∫ t

0

∫
Rd
c %(s, x)dxds 6 1 = ν(Rd).

This proves all remaining assertions.

1.2.2 Uniqueness of solutions

Now we present some classical uniqueness results and an example of an ill-posed
FPE with smooth coefficients. For the rather long proofs of these results, we refer
to Chapter 9 of [8] and to the exercises. Let aij , bi, c : [0, T ] × Rd → R be Borel
maps and a = (aij)i,j6 symmetric nonnegative definite for all (t, x).

First, assume c = 0. The following result is classical.

Proposition 1.2.11. Assume a, b satisfy
∫ T

0
|a|C2

b (Rd) + |b|C2
b (Rd)dt <∞. Then (FPE)

has a unique weakly continuous solution (µt)t∈[0,T ] with constant mass for every

initial datum ν ∈M+
b . In particular, for ν ∈ P, there is a unique weakly continuous

probability solution with initial datum ν.

Now denote, for a subprobability measure ν, by SPν the set of solutions µ =
(µt)t∈[0,T ) to (FPE) with initial value ν such that

c ∈ L1((0, T )× Rd;µtdt), b ∈ L2((0, T )× U ;µtdt) ∀ balls U ⊆ Rd,

and such that (1.2.5) holds for dt-a.e. t ∈ (0, T ). In particular, for µ ∈ SPν , dt-a.e.
µt is a subprobability measure. The assumption on b is fulfilled, if b is bounded on
each (0, T )× U .

We assume c 6 0, and we introduce the following assumptions on a.

9



1 Linear Fokker–Planck equations

(H1) For each ball U ⊆ Rd there is m(U),M(U) > 0 such that

a(t, x) > m(U) Id, |a(t, x)| 6M(U), ∀(t, x) ∈ (0, T )× U. (1.2.12)

(H2) For each ball U ⊆ Rd there is Λ(U) > 0 such that for all i, j 6 d

|aij(t, x)− aij(t, y)| 6 Λ(U)|x− y|, ∀x, y ∈ U, t ∈ (0, T ). (1.2.13)

Proposition 1.2.12. Suppose that (H1) and (H2) hold, b ∈ Lp((0, T ) × Rd), c ∈
L
p
2 (0, T )×Rd) for some p > d+2, and that there is a solution µ = (µt)t∈[0,T ) ∈ SPν

such that

|aij |
1 + |x|2

+
|bi|

1 + |x|
∈ L1((0, T )× Rd;µtdt). (1.2.14)

Then µ is the unique element in SPν .

Proposition 1.2.13. Suppose that (H1) and (H2) hold, b ∈ Lp((0, T ) × Rd), c ∈
L
p
2 (0, T )×Rd) for some p > d+ 2. In addition, assume there is a positive function

V ∈ C2(Rd) such that V (x)
|x|→∞−−−−→∞ such that

La,b,cV (t, x) 6 C + CV (x), ∀(t, x) ∈ (0, T )× Rd, (1.2.15)

for some C > 0. Then SPν contains at most one element.

The function V is called a Lyapunov function.

Remark 1.2.14. (i) In both cases one can prove the unique element in SPν satis-
fies (1.2.5) with equality. Hence, if c = 0, it is a probability solution.

(ii) If c = 0 and b is bounded on each (0, T ) × U , then the assertions of both
propositions mean that for every probability initial value ν, there is exactly
one, respectively at most one, probability solution to (FPE).

Another way to obtain uniqueness of probability solutions is via the corresponding
martingale problem, i.e. via the already indicated relation of FPEs to probability
theory. We will come back to this topic in due time.

Examples of nonuniqueness. Solutions to Fokker–Planck equations may be non-
unique, even for regular coefficients. A simple example in dimension d = 1 is

a = 0, b(x) = x
2
3 . (1.2.16)

The ODE ẏ = b(y), y(0) = 0 has the smooth solutions y1(t) = 0 and y2(t) = t3

3 .
It is straightforward to check that (µit)t>0, µit = δyi(t), i ∈ {1, 2}, are probability
solutions with initial datum µ|t=0 = δ0 to (FPE), which in this case is the continuity
equation

∂tµ = − div(bµ), µ|t=0 = δ0

(Exercise 2.1). The source of non-uniqueness is the lack of sufficient regularity of b
and the degeneracy of a. However, even for a = Id and for smooth b, examples of
non-uniqueness exist. Indeed there is the following result.

Proposition 1.2.15. There is b = (b1, . . . , b4) ∈ C∞(R4,R4) such that the FPE on
(0, T )× R4 with a = Id4×4 and b has several probability solutions.

Proof. Exercise 2.2

10



1 Linear Fokker–Planck equations

1.3 Superposition principle

In this chapter, we set c = 0 and consider the Fokker–Planck equation

∂tµt = L∗a,bµt,

(to which we simply refer as ”the FPE”), where for Borel coefficients a = (aij)i,j6d, b =
(bi)i6d on R+ × Rd we denote again La,bϕ := aij∂

2
ijϕ + bi∂iϕ. On C+Rd :=

C(R+,Rd) with the topology of locally uniform convergence, we denote by πt, t > 0,
the canonical projections πtw := w(t). As usual, we assume a to be pointwise sym-
metric nonnegative definite.

The martingale problem.

Definition 1.3.1. A solution to the martingale problem associated with a and b is a
Borel probability measure P ∈ P

(
C+Rd

)
such that∫

C+Rd

∫ T

0

|aij(s, πs)|+ |bi(s, πs)|dsdP <∞, ∀i, j 6 d, T > 0,

and for every ϕ ∈ C∞c (Rd) (equivalently: ϕ ∈ C2
b (Rd)) the real-valued stochastic

process Mϕ = (Mϕ
t )t>0 on C+Rd,

Mϕ
t := ϕ ◦ πt +

∫ t

0

(La,bϕ)(s, πs)ds

is a P -martingale w.r.t. the filtration Ft := σ(πr, 0 6 r 6 t). The set of all solutions
with initial condition P ◦ π−1

0 = ν is denoted by MPν(a, b).

With obvious modifications, the martingale problem can be posed on [s,∞) in-
stead of R+. In this case, the initial datum is a pair (s, ν) ∈ R+×P, and martingale
problem solutions are measures on C([s,∞),Rd). The set of martingale solutions
with initial condition (s, ν) is denoted by MPs,ν(a, b). The results of this section
hold for any initial time s. On a path space starting from time s, we denote for
t > s the canonical projection by πst .

A particularly useful property of the martingale problem is the stability of its
solutions w.r.t. to disintegration in the sense of the following lemma. For the
proof in the case of bounded coefficients, see [18, Thm.6.2.1]. The generalization to
unbounded coefficients follows by approximation.

Lemma 1.3.2. (i) Let ν ∈ P, s > 0, P ∈ MPs,ν(a, b) and let (Qx)x∈Rd ⊆
P(C([s,∞),Rd)) be the ν-a.s. unique family such that x 7→ Qx(A) is mea-
surable for all A ∈ B(C([s,∞),Rd)) and

P (A) =

∫
Rd
Qx(A) ν(dx)

(i.e. (Qx)x∈Rd is the disintegration family of P w.r.t. πs). Then Qx ∈
MPs,x(a, b) for ν-a.e. x ∈ Rd.

11
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(ii) Let ti > s, Y = (πst0 , . . . , π
s
tn) : C([s,∞),Rd) → (Rd)n+1, A = σ(Y ), P ∈

MPs,ν(a, b) and (Qw)w∈C([s,∞),Rd) be a regular conditional probability of P

w.r.t. A. Denote by Qtnw the restriction of Qw to B(C([tn,∞),Rd)), i.e.
Qtnw (A) := Qw(u ∈ C+Rd |u[tn,∞) ∈ A), A ∈ B(C([tn,∞),Rd)), where u[tn,∞)

denotes the restriction of u ∈ C+Rd to C([tn,∞),Rd). Then there is a set
A ∈ A, P (A) = 0, such that Qtnw ∈MPtn,w(tn)(a, b) for all w ∈ Ac.
Moreover, if P 1, P 2 ∈ MPs,ν(a, b) such that P 1 = P 2 on A, then A can be
chosen such that P 1(A) = P 2(A) = 0.

The following standard result is one main reason why the martingale problem
continues is popular in probability theory. For the proof, see [17].

Proposition 1.3.3. If X is a weak solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t > 0, (1.3.1)

where σ ∈ Rd×d such that a = 1
2σσ

T , then LX ∈MLX0
(a, b). Conversely, for every

ν ∈ P and P ∈MPν(a, b) there is a weak solution X to this SDE such that LX = P .

Remark 1.3.4. Recall that solutions to this SDE are said to be weakly unique, if for
any two weak solutions X and Y it holds

LX0
= LY0

=⇒ LX = LY .

Similarly, solutions are weakly unique for an initial datum ν ∈ P, if the previous
implication holds for all weak solutions with LX0

= LY0
= ν.

For the rest of the chapter, we simply refer to (1.3.1) as ”the SDE”, and to the
corresponding martingale problem as ”the martingale problem”. It is obvious how
to generalize the initial time of the SDE to any s > 0.

There is a wide literature on the martingale problem and, in particular, its con-
nection to Markov processes and probability theory, see for instance the classical
reference [18]. In this lecture, we only use the martingale problem as a tool, via the
previous proposition.

We have already seen in Section 1.1 that for every weak solution X to the SDE,
(LXt)t>0 is a weakly continuous probability solution to the FPE. By Proposition
1.3.3, equivalently we have:

Corollary 1.3.5. P ∈MPν(a, b) =⇒ (P ◦π−1
t )t>0 is a weakly continuous probability

solution to the FPE with initial datum ν, and all assumptions of Lemma 1.2.5 are
true.

The superposition principle. text
The main aim of this chapter is to prove the following theorem, the first cornerstone
of the lecture.

Theorem 1.3.6 (Superposition principle). Let σij , bi : R+ × Rd → R, i, j 6 d, be
Borel. For every weakly continuous probability solution (µt)t>0 to the FPE with

12
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coefficients a = (aij)i,j6d = 1
2σσ

T and b such that∫ T

0

∫
Rd
|aij |+ |bi| dµtdt <∞, ∀T > 0, i, j 6 d, (1.3.2)

there is a weak solution X to the SDE such that LXt = µt for all t > 0.

In particular, if µ0 = ν, then LX0
= ν.

This result is relatively new: It was iteratively proven by Ambrosio, Figalli
(Fields-medalist!) and Trevisan between 2008 and 2016, see [1, 10, 19].

Due to the equivalence of the SDE and the martingale problem, we may instead
prove that for (µt)t>0 as in the assertion there is P ∈MPµ0

(a, b) such that P ◦π−1
t =

µt for all t > 0.

Remark 1.3.7. (i) It should be remarked that there is no regularity assumption on
a and b (except measurability).

(ii) Assumption (1.3.2) can be generalized to∫ T

0

∫
Rd

|aij |+ |〈b, x〉|
1 + |x|2

dµtdt <∞, ∀T > 0, i, j 6 d, (1.3.3)

see [9], which is essentially sharp (〈·, ·〉 denotes the standard Euclidean inner
product).

For merely local in space integrability there are counterexamples to the asser-
tion of Theorem 1.3.6. For instance, |MPν(a, b)| 6 1 for every ν ∈ P, if
a(t, x) is strictly elliptic for every x and continuous in x uniformly in t > 0,
and a and b are locally bounded on R+ × Rd. But [7] contains an example of
such coefficients for which the FPE has several probability solutions for every
initial probability measure ν (which do not satisfy (1.3.3)).

(iii) Weak continuity and constant mass 1 of (µt)t>0 is necessary, since the one-
dimensional time marginals of any weak SDE solution are a weakly continuous
curve of probability measures (Exercise 3.1). However, since every probability
FPE-solution as in the assumption of Theorem 1.3.6 has a weakly continuous
dt-version (Exercise 3.2), the continuity assumption is no restriction.

(iv) For any solution as in Theorem 1.3.6, (1.2.3) and (1.2.4) hold for all ϕ ∈
C2
b (Rd). This follows by a straightforward approximation argument.

The superposition principle allows to prove uniqueness of FPE-probability solu-
tions via weak uniqueness for the SDE:

Corollary 1.3.8. Let s > 0, ν ∈ P. If solutions to the martingale problem (the SDE)
with initial condition (s, ν) are (weakly) unique, then there is, up to dt-zero sets,
at most one probability solution to the FPE with initial condition (s, ν) such that
(1.3.2) holds (with s instead of 0).

13
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Proof. Without loss of generality, let s = 0. Suppose µi = (µi)t>0, i ∈ {1, 2},
are two probability solutions to the FPE with initial datum ν, satisfying (1.3.2).
There exist weakly continuous dt-versions (µ̃it)t>0 (with initial datum ν), and by

the superposition principle, there exist weak SDE solutions X̃i such that LX̃it
= µ̃it

for all t > 0 and i ∈ {1, 2}. By assumption, µ̃1
t = µ̃2

t for all t follows. Hence also
µ1
t = µ2

t dt-a.s.

The reverse uniqueness implication is not true, i.e. uniqueness of FPE-probability
solutions for one initial datum ν does not imply weak uniqueness of SDE solutions
with initial distribution ν. Instead, one needs FPE-uniqueness for sufficiently many
initial times and measures:

Proposition 1.3.9. Suppose weakly continuous probability solutions (µt)t>s to the
FPE satisfying (1.3.2) (with s instead of 0) are unique for every initial condition
(s, δx) ∈ R+ × P, x ∈ Rd. Then solutions to the martingale problem (the SDE) are
(weakly) unique for every initial datum (s, δx), s > 0, x ∈ Rd.

Proof. Let x ∈ Rd. We have to prove

P 1, P 2 ∈MPx(a, b) =⇒ P 1 = P 2,

and the RHS is equivalent to

P 1 ◦ (πt0 . . . . , πtn)−1 = P 2 ◦ (πt0 . . . . , πtn)−1, ∀0 6 t0 < · · · < tn (1.3.4)

for all n ∈ N. Then the assertion follows, since the proof for s 6= 0 is the same.
The assumption entails this equality for n = 1, since by Corollary 1.3.5 the curves
(P 1 ◦π−1

t )t>0, (P
2 ◦π−1

t )t>0 are weakly continuous probability solutions to the FPE
satisfying (1.3.2) with initial condition δx.

Now we proceed by induction. Assume (1.3.4) holds for n− 1 ∈ N. For arbitrary
fi : Rd → R measurable bounded, i ∈ {0, . . . , n} and 0 6 t0 < · · · < tn, we have to
show

EP 1

[
f0(πt0) · · · fn(πtn)

]
= EP 2

[
f0(πt0) · · · fn(πtn)

]
. (1.3.5)

Let (Qiw)w∈C+Rd be a r.c.p. of P i w.r.t. σ(πt0 , . . . , πtn−1
). By Lemma 1.3.2 (ii)

Q
i,tn−1
w ∈ MPtn−1,w(tn−1)(a, b) for Pi-a.e. w. By the last part of the lemma, the

exceptional set A such that the previous inclusion holds for all w ∈ Ac can be chosen
such that P 1(A) = 0 = P 2(A). Hence, by assumption, for all w ∈ Ac ∩N2, where
N2, P2(N2) = 0, is such that

EQ2
w

[fn(πtn)] = EP2 [fn(πtn)|σ(πt0 , . . . , πtn−1)], ∀w ∈ N c
2 ,

we have

E
Q

1,tn−1
w

[
fn(π

tn−1

tn )
]

= E
Q

2,tn−1
w

[
fn(π

tn−1

tn )
]

= EP2
[fn(πtn)|σ(πt0 , . . . , πtn−1

)](w),

which implies there is H : C+Rd → R, bounded σ(πt0 , . . . , πtn−1)-measurable such
that H = EP i

[
fn(πtn)|σ(πt0 , . . . , πtn−1)

]
, both P 1- and P 2-a.s. Now we can con-

clude, since the LHS and RHS of (1.3.5) equals EP i
[
f0(πt0) · · · fn−1(πtn−1

)H
]
, i = 1

and i = 2, respectively. But for i = 1 and i = 2, these integral values are the same by
the induction assumption, since the integrand is σ(πt0 , . . . , πtn−1

)-measurable.
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A natural question is whether the previous proposition implies uniqueness for all
initial data (s, ν) ∈ R+ × P. The answer is positive:

Proposition 1.3.10. Let s > 0 and assume |MPs,x(a, b)| 6 1 for all x ∈ Rd. Then
|MPs,ν(a, b)| 6 1 for all ν ∈ P.

Proof. Exercise 3.3.

Corollary 1.3.11. Under the assumption of Proposition 1.3.10, the FPE has at most
one weakly continuous probability solution satisfying (1.3.2) (with s instead of 0)
with initial condition (s, ν) for every probability measure ν and s > 0.

Proof. Let (s, ν) ∈ R+ × P. Proposition 1.3.10 yields |Ms,ν(a, b)| 6 1, and the
assertion follows from Corollary 1.3.8.

1.3.1 Deterministic special case

Here we consider the case a = 0, i.e. the FPE is the continuity equation

∂tµt = −div
(
bµt
)
, t ∈ (0,∞). (1.3.6)

In this case, we have the following characterization of solutions to the martingale
problem:

P ∈MPν(0, b) ⇐⇒ P ∈P(C+Rd) such that P (Cac(b)) = 1, P ◦ π−1
0 = ν,∫

C+Rd

∫ T

0

b(t, wt(t))dtdP (w) <∞∀T > 0,

where Cab(b) denotes the set of absolutely continuous maps y : [0,∞) → Rd such
that y′(t) = b(t, y(t)) dt-a.s. (i.e. the set of integral solutions to the ODE determined
by b).

The superposition principle asserts: For any weakly continuous probability solu-

tion (µt)t>0 to (1.3.6) such that
∫ T

0

∫
Rd |b(t, x)|dµtdt < ∞ for all T > 0 there is a

probability measure P on the set of integral solutions to the ODE corresponding to
b such that P ◦ π−1

t = µt, t > 0.
In particular, the existence of such a solution (µt)t>0 with initial datum ν yields

the existence of at least one integral solution to the ODE with initial datum x for
ν-a.e. x ∈ Rd. Conversely, if for ν-a.e. x there is at most one integral solution to the
ODE with initial datum x, then there is at most one weakly continuous probability
solution to the continuity equation with initial datum ν satisfying the previously
mentioned integrability condition.

Analog statements hold for an initial time s > 0.

1.3.2 Proof

We now prove Theorem 1.3.6, closely following Trevisan [19], restricting to the time
interval [0, 1] instead of R+. The latter case is a simple modification of the proof
below (the definition of solution to the FPE and the martingale problem on [0, 1] is
the same as on R+, with the obvious modifications). The idea is the following.
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(1) Approximate a and b by sufficiently regular coefficients an and bn, consider
the corresponding FPEs with solutions µn for which the assertion is already
known and such that µn → µ and (an, bn)→ (a, b), in a suitable sense. This
yields the existence of Pn ∈MPµn0 (an, bn) with Pn ◦ π−1

t = µnt .

(2) Prove tightness of (Pn)n∈N in P
(
C[0,1]Rd

)
in order to extract a weak limit

point P .

(3) Prove P ∈MPµ0(a, b).

Remark 1.3.12. If µn → µ weakly, then P ◦π−1
t = µt follows from the weak conver-

gence Pn → P and Pn ◦ π−1
t = µnt .

First, assume, writing a(t) = [x 7→ a(t, x)] and likewise for b,

(A1)

∫ 1

0

|a(t)|C2
b (Rd) + |b(t)|C2

b (Rd)dt <∞.

In this case, the superposition principle holds. Indeed, by the standard Picard–
Lindelöf theorem, under (A1) the SDE has a unique weak solution for any initial
condition ν ∈ P. On the other hand, by Proposition 1.2.11, for any initial proba-
bility measure ν, there is at most one weakly continuous probability solution to the
FPE (by (A1), every such solution satisfies (1.3.2)). Hence the latter exists and is
necessarily the one-dimensional time marginal curve of the unique SDE solution.

The generalization from this base case to the full assertion of the theorem proceeds
via several steps: We verify the assertion under each of the following increasingly
general assumptions. Below we denote by U ⊆ Rd an arbitrary ball.

(A2)

∫ 1

0

sup
x
|a(t, x)|+ sup

x
|b(t, x)|dt <∞,

(A3)

∫ 1

0

|a(t)|L∞(U) + |b(t)|L∞(U)dt <∞ ∀U and (1.3.2),

(A4)

∫ 1

0

∫
Rd
|a(t, x)|+ |b(t, x)|dµtdt <∞.

Each step proceeds via (1)-(3), and the main task in each step is to choose a suitable
approximations of the coefficients and the solution.

We first present the general ideas for (1)-(3) before applying them to each gener-
alization step. Let µ = (µt)t∈[0,1] be the solution from the assertion.

(1) Approximation .
(1).1 Image measures of smooth maps. Let g = (g1, . . . , gd) ∈ C2(Rd,Rd) have
uniformly bounded first- and second-order derivatives, and set µg = (µgt )t∈[0,1] :=

(µt ◦ g−1)t∈[0,1]. Note ϕ ◦ g ∈ C2
b (Rd) for ϕ ∈ C2

b (Rd) and

La,b(ϕ ◦ g) =

d∑
k=1

La,b(g
k)[(∂kϕ) ◦ g] +

d∑
k,l=1

aij∂ig
k∂jg

l[(∂2
klϕ) ◦ g].
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For any t > 0 and k, l 6 d, let agkl(t), b
g
k(t) : Rd → R be Borel maps such that

Eµt [aij(t)∂igk∂jgl|σ(g)] = agkl(t) ◦ g, Eµt [La,bgk(t)|σ(g)] = bgk(t) ◦ g, µt − a.s.

agkl(t) and bgk(t) exist and are uniquely determined µt-a.s. by the factorization
lemma. Note that agkl(t) and bgk(t) are the density of [(aij(t)∂ig

k∂jg
l)µt] ◦ g−1 and

[(La,b(g
k)µt] ◦ g−1 w.r.t. µgt , respectively (Exercise 4.1).

µg is a weakly continuous probability solution to

∂tνt = L∗ag,bgνt, t ∈ [0, 1]

(Exercise 4.2). Moreover, by definition we have for all t > 0 and p ∈ [1,∞]

|agkl(t)|Lp(Rd;µgt ) 6 C|a(t)|Lp(Rd;µt), |bgk(t)|Lp(Rd;µgt ) 6 C||a(t)|+ |b(t)||Lp(Rd;µt)

(1.3.7)

by the contraction property of conditional expectations, where C > 0 depends only
on the L∞-norm of the first- and second-order derivatives of g.

(1).2 Mollification by convolutions. Let % : Rd → R, % > 0, be a smooth probability
density (w.r.t. dx), and set µ∗% = (µt ∗%)t∈[0,1], i.e.

∫
Rd f d(µt ∗%) =

∫
Rd(f ∗%) dµt.

Since ϕ ∗ % ∈ C2
b (Rd) for ϕ ∈ C2

b (Rd) and

La,b(ϕ ∗ %) = bi(∂iϕ) ∗ %+ aij(∂
2
ijf) ∗ %,

defining

a%ij(t, x) =
d
(
(aij(t)µt) ∗ %

)
d(µt ∗ %)

(x), b%i (t, x) :=
d
(
(bi(t)µt) ∗ %

)
d(µt ∗ %)

(x),

(exists by Lemma 1.3.13) we find that µ ∗ % is a weakly continuous curve of proba-
bility measures and solves the FPE

∂tνt = L∗a%,b%νt, t > 0 (Exercise 4.3).

The following lemma can be found as Lemma A.1 in [19]. Recall that Mb denotes
the set of signed Borel measures on Rd with finite total variation. We denote by
Di% the vector of i-th partial derivatives of % (i.e. the entries of D1% are the entries
of the Jacobian of %; the entries of D2% are the entries of the Hessian of %, ...).

Lemma 1.3.13. Let % also satisfy |Di%| 6 C% pointwise for i ∈ {1, . . . , k} for some
C > 0, and let η1 ∈ M+

b , η2 ∈ Mb with η2 = hη1, where h : Rd → R. Then η2 ∗ %
has a density h% w.r.t. η1 ∗ %, h% has a Ck-version and

|h%|Lp(Rd;η1∗%) 6 |h|Lp(Rd;η1), ∀p ∈ [1,∞].

Morevoer, for every convex map Θ : R→ R+∫
Rd

Θ(|h%|)d(η1 ∗ %) 6
∫
Rd

Θ(|h|) dη1. (1.3.8)

We will apply the lemma for η1 = µt, η
2 = aij(t)µt, h = aij(t) and h% = a%ij(t),

and, similarly, for bi and b%i .
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1 Linear Fokker–Planck equations

(2) Tightness ..
Recall: A sequence of Borel probability measures (µn)n∈N on a metric space S is
called tight, if for every ε > 0, there is a compact set K ⊆ S such that µn(K) > 1−ε
for all n ∈ N. If (µn)n∈N is tight, it contains a weakly converging subsequence. A
sufficient criterion for tightness is the existence of a coercive function f : S → R+

(i.e. {f 6 c} is compact for all c > 0) such that

sup
n∈N

∫
S

f dµn <∞.

See also Exercise 4.4. For the rest of this section, for P ∈ P(C[0,1]Rd), we sometimes

write Pt := P ◦ π−1
t . We need the following result, see [19, Thm.A.2, Cor.A.5].

Proposition 1.3.14. Let θ,Θ1,Θ2 : R+ → R+ be functions such that Θi, i ∈ {1, 2},
are convex with

lim
x→∞

θ(x) = lim
x→∞

Θi(x)

x
=∞, i ∈ {1, 2}.

Then there exists a coercive map Ψ : C[0,1]R1 → R+ ∪ {∞} such that for all Borel

maps aij , bi on [0, 1]×Rd such that a = (aij)i,j6d is pointwise nonnegative definite
and symmetric and every P ∈MPP0

(a, b), we have

EP [Ψ(f◦π)] 6
∫
Rd
θ(|f |) dP0+

∫ 1

0

Θ1

(
|La,bf |

)
+Θ2

(
aij∂if∂jf

)
dPtdt, ∀f ∈ C2

b (Rd).

(1.3.9)

Here we use the notation f ◦ π : C[0,1]Rd → C[0,1]R1, f ◦ π(w) = [t 7→ f(πt(w))].

So, if for our sequence of FPE-solutions µn for approximate coefficients an, bn, we
can find θ,Θi, i ∈ {1, 2} such that the RHS of (1.3.9) is finite and bounded uniformly
in n for the corresponding martingale solutions Pn obtained by a previously proven
step of the theorem, then (1.3.9) provides a criterion to prove tightness of (Pn)n∈N.

(3) Limit ...
Here we assume (Pn)n∈N obtained in part (1) has a weak limit point P , and we
prove P ∈ MPP0

(a, b). The latter holds if and only if: for all s, t ∈ [0, 1], s 6 t,
ϕ ∈ C2

b , |ϕ|C2
b
6 1, and h : C[0,1]Rd → R continuous, bounded and Fs-measurable

it holds∫
C[0,1]Rd

h

ï
ϕ ◦ πt − ϕ ◦ πs −

∫ t

s

La,bϕ(r, πr)dr

ò
dP = 0. (1.3.10)

This identity holds for Pn, an and bn instead of P, a and b, hence by the weak
convergence Pn → P it remains to prove∫

C[0,1]Rd
h

ï ∫ t

s

Lan,bnϕ(r, πr)dr

ò
dPn−

∫
C[0,1]Rd

h

ï ∫ t

s

La,bϕ(r, πr)dr

ò
dP

n→∞−−−−→ 0.

(1.3.11)

Now we prove this convergence for both kinds of approximations considered in (1).

18



1 Linear Fokker–Planck equations

(3).1 Image measures For each n ∈ N, let gn satisfy the assumptions of g in

(1).1 and, in addition, gn(x) = x on Bn(0), Dgn
n→∞−−−−→ 1d×d (the unit matrix),

D2gn
n→∞−−−−→ 0 and |Dign(x)| 6 C for all i ∈ {1, 2}, n ∈ N and x ∈ Rd. Denote

µn := µgn , where the latter is defined as in (1).1 above.
Let L̄ denote any operator of type

L̄ = āij∂
2
ij + b̄i∂i

for continuous and compactly supported coefficients āij and b̄i, i, j 6 d. We subtract
on the LHS of (1.3.11) the term∫

C[0,1]Rd
h

ï ∫ t

s

L̄ϕ(r, πr)dr

ò
dPn −

∫
C[0,1]Rd

h

ï ∫ t

s

L̄ϕ(r, πr)dr

ò
dP, (1.3.12)

and note that this difference vanishes as n→∞ by the weak convergence of Pn →
P . Consequently, the lim supn of the absolute value of the LHS of (1.3.11) is not
affected by first subtracting this difference term before taking absolute value and
lim supn. So, we estimate the lim supn of the absolute value of the LHS of (1.3.11),
up to a multiplicative constant depending only on h, by

lim sup
n

∫ t

s

∫
Rd
|Lan,bnϕ− L̄ϕ|dµnr dr +

∫ t

s

∫
Rd
|La,bϕ− L̄ϕ|dµrdr. (1.3.13)

Let us focus on the first integral term. By definition of an, bn and µn, it is equal to∫ t

s

∫
Rd
|Eµr [La,b(ϕ ◦ gn)|σ(gn)]− L̄ϕ ◦ gn|dµrdr

=

∫ t

s

∫
Rd
|Eµr [La,b(ϕ ◦ gn)− L̄ϕ ◦ gn|σ(gn)]dµrdr

6
∫ t

s

∫
Rd
|La,b(ϕ ◦ gn)− L̄ϕ ◦ gn|dµrdr

6
∫ t

s

∫
Rd

d∑
k,l=1

|aij∂igkn∂jgln − ākl ◦ gn|+
d∑
k=1

|La,b(gkn)− b̄k ◦ gn
∣∣dµrdr,

where for the equality we used that L̄ϕ◦gn is σ(gn)-measurable, the first inequality
is due to the L1-contraction property of conditional expectations, and the second
inequality is obtained by writing the previous line explicitly and using the estimate
|ϕ|C2 6 1.

Using the convergence properties of gn and its first- and second-order derivatives
specified above and taking lim supn of the RHS gives the estimate

lim sup
n

∫ t

s

∫
Rd
|Lan,bnϕ− L̄ϕ|dµnr dr 6

∫ t

s

∫
Rd

d∑
i,j=1

|aij − āij |+
d∑
i=1

|bi − b̄i| dµrdr.
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1 Linear Fokker–Planck equations

Hence, taking into account (1.3.13), altogether the lim supn of the LHS of (1.3.11)
is bounded above by

2C

∫ t

s

∫
Rd

d∑
i,j=1

|aij − āij |+
d∑
i=1

|bi − b̄i| dµrdr.

Since āij and b̄ij are arbitrary continuous and compactly supported maps, and since
Cc(Rd) is dense in L1((s, t)×Rd; ζ) for every locally finite Borel measure ζ, we can
make the previous sum arbitrary small and, hence, conclude (1.3.11).

(3).2 Mollifications ...
Let (%n)n∈N be a sequence of smooth probability densities w.r.t. dx such that

%ndx
n→∞−−−−→ δ0 weakly. Then the argument is similar to the previous case. Details

are left as Exercise 5.1.

Proof of Theorem 1.3.6 ...
Now we apply (1)-(3) to coefficients satisfying (A2) to deduce the assertion from
the validity of the assertion for coefficients satisfying (A1). Then, one assumes (A3)
and, via (1)-(3), proves the assertion in this case, relying on the validity in the case
(A2) proven before. Finally, one proceeds similarly under the general assumption,
i.e. (A4), by relying on(A3). In each step, one has to make fitting choices along
(1)-(3).

Under assumption (A2).
(1). Let ζ(x) := C exp(−

√
1 + |x|2), where C > 0 such that |ζ|L1 = 1, and set

%n := ndζ(nx), n ∈ N. Then |Di%n| 6 cn2%n, i ∈ {1, 2} for some c > 0, and

%ndx
n→∞−−−−→ δ0 weakly. Set µn := µ ∗ %n, and note µnt

n→∞−−−−→ µt weakly for all
t ∈ [0, 1]. By (1).2, µn is a weakly continuous probability solution for the FPE with
coefficients an := a%n and bn := b%n , defined as in (1).2 with %n in place of %. By
Lemma 1.3.13, we have for all p > 1 and t ∈ [0, 1]

|anij(t)|Lp(Rd;µnt ) 6 |a(t)|Lp(Rd;µt).

An analog estimate holds for bi, i 6 d.
Since anij and bni satisfy (A1), there is a family (Pn)n∈N, Pn ∈MPµn0 (an, bn) such

that Pnt = µnt for all t ∈ [0, 1].
(2). Since the sequence (µn0 )n∈N converges weakly to µ0, it is tight, and thus

there is an increasing function θ : R+ → R+ with limx→∞ θ(x) = ∞ such that
supn

∫
Rd θ(|x|) dµ

n
0 6 1 (compare Exercise 4.4). By (A2) and the de la Vallée Poussin

criterion, there is a nondecreasing, convex map Θ : R+ → R+ with limx→∞
Θ(x)
x =

∞ such that ∫ 1

0

Θ
(

sup
x
|a(t, x)|

)
+ Θ

(
sup
x
|b(t, x)|

)
dt <∞.

For k ∈ {1, . . . , d}, denote by xk : Rd → R the map x = (x1, . . . , xd) 7→ xk. Apply
Proposition (1.3.14) with θ, Θ1 = Θ2 = Θ, f = xkχR, k 6 d, where χR : Rd → [0, 1]
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1 Linear Fokker–Planck equations

denotes a standard cutoff function, equal to 1 on BR(0), R > 0, to obtain the
existence of a coercive (hence lower semicontinuous) map Ψ such that

EPn [Ψ(xkχR ◦ π)]

6
∫
Rd
θ(|xkχR|)dµn0 +

∫ 1

0

Θ
(
|Lan,bnxkχR|

)
+ Θ

(
anij∂i(xkχR)∂j(xkχR)

)
dµnt dt.

Note xkχR
R→∞−−−−→ xk, |xkχR| 6 |xk|, ∂ixkχR is bounded uniformly in R > 0 and

∂2
ijxkχR converges to 0 pointwise as R → ∞. Hence, the lower semicontinuity of

Ψ, the monotonicity of θ, Fatou’s lemma and dominated convergence imply

EPn [Ψ(xk ◦ π)] 6
∫
Rd
θ(|xk|)dµn0 +

∫ 1

0

∫
Rd

Θ
(
bnk (t)

)
+ Θ

(
ankk(t)

)
dµnt dt.

By construction of θ and (1.3.8) the RHS is bounded above by

1+

∫ 1

0

∫
Rd

Θ
(
|bk(t)|

)
+Θ
(
|akk(t)|

)
dµtdt 6 1+

∫ t

0

Θ
(

sup
x
|b(t, x)|

)
+Θ
(

sup
x
|a(t, x)|

)
dt <∞.

Since w 7→
∑d
k=1 Ψ(xk◦w) is coercive on C[0,1]Rd (Exercise 5.2), we obtain tightness

of (Pn)n∈N.

(3). Follows from (3).2 above. Remark 1.3.12 concludes this part of the proof.

Under assumption (A3). Proceed similarly as in the previous case, but use im-
age measures instead of mollifications to approximate a and b. Steps (2) and (3)
follow similarly as in the previous case.

Under assumption (A4). Similarly to the previous cases, approximate a and b
by convolutions. For the detailed arguments of the previous two cases, please see
[19, p.38,39] (Exercise 5.3).
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2 Connection to Markov processes

There is vast literature on the theory Markov processes and their applications. A
very short list of standard references (in no particular order), including material
on discrete time Markov processes (usually called Markov chains) is: [Stroock2014],
[LeGall2016], [Liggett2010], [Eberle2010] (lecture notes), [Kirkwood2015], [Wentzell81],
[GikhmanSkorokhod04].

2.1 Brief repetition of Markov processes

Let (S, S) be a measurable space. A map Λ : R+ ×R+ ×M+
b (S)→M+

b (S) has the
flow property, if

Λ(s, t, ζ) = Λ
(
r, t,Λ(s, r, ζ)

)
, ∀0 6 s 6 r 6 t, ζ ∈M+

b (S).fl (2.1.1)

Likewise, Λ has the flow property in M ⊂M+
b (S), if Λ(s, t,M) ⊆M for all 0 6 s 6 t,

and (2.1.1) holds for all ζ ∈M.

Definition 2.1.1. A tuple (Ω,F, (Xt)t>0, (Px)x∈S), consisting of a measurable space
(Ω,F), an S-valued stochastic process X = (Xt)t>0 on Ω and a family (Px)x∈S ⊆
P(Ω) is a Markov process, if

(i) x 7→ Px(Γ) is S−measurable for all Γ ∈ F,

(ii) there is a filtration (Ft)t>0 on (Ω,F) such that each Xt is Ft-measurable and

Px(Xt+s ∈ B|Fs) = PXs(Xt ∈ B) Px−a.s. ∀s, t > 0, B ∈ S, x ∈ S. (2.1.2)

A Markov process is called normal, if Px(X0 = x) = 1 for all x ∈ S.

Without further mentioning, we always consider normal Markov processes.

Remark 2.1.2. If (ii) is true for (F̂t)t>0 and Ft ⊆ F̂t for all 0 6 t, then (ii) is true
for (Ft)t>0, if (Xt)t>0 is (Ft)t>0-adapted.

The generic example for Markov processes with continuous sample paths is the
canonical model :

Example 2.1.3 (Canonical model). Ω = C(R+, S), πt : Ω → S, πt(w) = w(t),
F = σ(πt, t > 0), Ft = σ(πr, 0 6 r 6 t), Xt = πt.

Px is often given as a family of solution laws to an SDE (equivalently: as a family
of solutions to the corresponding martingale problem), and the Markov process is
normal if and only if Px has initial condition δx. Every Markov process of this type
can be modeled on the canonical model.

22



2 Connection to Markov processes

(2.1.2) is the Markov property. An intuitive interpretation, in particular for nor-
mal Markov processes, is that (Px)x∈S models a random memoryless evolution in
time on S, and Px is the law of the evolution trajectories originated from x. Another
succinct description of (2.1.2) is:

”The past (of the process X with law Px) is independent of the future given the
present.”

The ”future” is the event {Xt+s ∈ B}, the past is Fs, i.e. the information available
at time s, and the present is the random state Xs at time s.

Markovian semigroups. A Markovian transition function on S is a family of mea-
surable kernels (pt)t>0, pt : S × S→ [0, 1] such that

(i) pt(x, S) = 1, ∀t > 0, x ∈ S,

(ii) ptps = pt+s, which means∫
S

ps(y,A) pt(x, dy) = pt+s(x,A), ∀x ∈ S,A ∈ S, t, s > 0. (2.1.3)

(2.1.3) are the Chapman–Kolmogorov equations.

Lemma 2.1.4. Let (pt)t>0 be a Markovian transition function and define Λ via

Λ(s, t, ζ) :=

∫
S

pt−s(x, dy) ζ(dx) ∈M+
b , i.e. Λ(s, t, ζ)(A) =

∫
S

pt−s(x,A) ζ(dx).

Then Λ satisfies the flow property (2.1.1).

Proof. Exercise 5.4.

In general, the converse is not true. We recall the following well-known results
without proofs.

Proposition 2.1.5. (i) Let (Ω,F, (Xt)t>0, (Px)x∈S) be a Markov process. Then
(pt)t>0, pt(x,A) := Px(Xt ∈ A), is a Markovian transition function (Exercise
5.5). Moreover, for all f : Sn+1 → R bounded and Sn+1-measurable and all
0 6 t0 6 . . . 6 tn

Ex
[
f(Xt0 , . . . , Xtn)

]
(2.1.4)

=

∫
S

· · ·
∫
S

Å∫
S

f(x0, . . . , xn) ptn−tn−1(xn−1,dxn)

ã
ptn−1−tn−2(xn−2, dxn−1) . . . pt0(x, dx0).

(ii) If (S, S) is Polish, then for every Markovian transition function (pt)t>0 there
is a Markov process with (2.1.4).

For a normal Markov process, the corresponding Markovian transition function
satisfies p0(x, ·) = δx(·) for all x ∈ S.
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2 Connection to Markov processes

For a Markov process and any ν ∈ P(S), one sets Pν :=
∫
S
Px ν(dx) and some-

times considers (Pν)ν∈P(S) instead of (Px)x∈S . It is straightforward to check

Eν
[
f(Xt0 , . . . , Xtn)

]
=

∫
S

∫
S

· · ·
∫
S

Å∫
S

f(x0, . . . , xn) ptn−tn−1(xn−1,dxn)

ã
ptn−1−tn−2(xn−2, dxn−1) . . . pt0(x, dx0) ν(dx).

The essence of the previous proposition is that the measures Pν of a Markov pro-
cess are uniquely determined by its transition function and initial datum. Succinctly
written, the above formula reads

Pν ◦ (πt0 , . . . , πtn)−1 = νpt0pt1−t0pt2−t1pt3−t2 · · · ptn−tn−1
.

Markovian (dual) semigroups and generator. Denote by S+
b the set of bounded

S-measurable maps g : S → R+. For a Markovian transition function (pt)t>0,
define

Pt : S+
b → S+

b , (Ptf)(x) :=

∫
S

f(y) pt(x, dy).

(Pt)t>0 is called the Markovian semigroup associated with (pt)t>0. Pt is simply the
canonical extension from {1A |A ∈ S} to S+

b of the map pt : 1A 7→ [x 7→ pt(x,A)].
Since we only consider normal Markov processes, we have P0 = Id.

The dual semigroup (P ∗t )t>0 consists of the maps

P ∗t : P(S)→ P(S), (P ∗t ν)(A) :=

∫
S

pt(x,A) ν(dx),

i.e. in particular P ∗t δx = pt(x, ·). By Lemma 2.1.4, (s, t, ζ) 7→ P ∗t−sζ has the flow
property in P(S).

Definition 2.1.6. The generator of a normal Markov process with Markovian semi-
group (Pt)t>0 is the linear, typically unbounded, operator (A,D(A)),

(Af)(x) := lim
h→0

Phf(x)− f(x)

h
,

and the domain D(A) consists of those measurable maps f for which the limit on
the RHS exists for every x ∈ S, possibly restricted to subspaces such as Cb(S) or
Lp(S;µ) for a measure µ on S.

In other words, Af is the (pointwise in x) right-derivative of t 7→ Ptf in t = 0.

Time-inhomogeneous Markov processes. So far (with the exception of the flow
property), in this chapter we considered the time-homogeneous setting: the mea-
sures Px in Definition 2.1.1 do not depend on a time parameter s, considered as
the ”starting time” of the corresponding process, and the corresponding Markovian
transition function (pt)t>0 is a one-parameter family of kernels. Definition 2.1.1 can
be extended to the time-inhomogeneous case. For the sake of simplicity, we only
consider this generalization in the canonical model as follows.

Let, for s > 0, Ωs = C([s,∞), S), Fs = σ(πsr , s 6 r), Fs,t = σ(πsr , r ∈ [s, t]),
where πst : Ωs → S, πst (w) = w(t).
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2 Connection to Markov processes

Definition 2.1.7. A family (Ps,x)s∈R+,x∈S of Borel probability measures Ps,x ∈ P(Ωs)
is a time-inhomogeneous Markov process, if

(i) x 7→ Ps,x(Γ) is S-measurable for all Γ ∈ Fs and s > 0,

(ii) the time-inhomogeneous Markov property holds, i.e.

Ps,x
(
πst ∈ B|Fs,r

)
= Pr,πsr

(
πrt ∈ B

)
Ps,x−a.s., ∀0 6 s 6 r 6 t, x ∈ S,B ∈ S.

Again, we restrict to the normal case, i.e. Ps,x(πss = x) = 1. The assertions of
Proposition 2.1.5 have time-inhomogeneous analogs.

Similar to the time-homogeneous case, a family of measurable probability kernels
(ps,t)s6t, ps,t : S × S→ [0, 1] such that ps,t = ps,rpr,t for all 0 6 s 6 r 6 t is called
time-inhomogeneous Markovian transition function. For a time-inhomogeneous
normal Markov process (Ps,x)s∈R+,x∈S , we have ps,s(x, ·) = δx(·) and the family
(ps,t)s6t, ps,t(x,A) := Ps,x(πst ∈ A), is a time-inhomogeneous Markovian transition
function (Exercise 6.1), which extends to the Markovian semigroup

Ps,t : S+
b → S+

b , (Ps,tf)(x) :=

∫
S

f(y) ps,t(x, dy).

The dual semigroup is (P ∗s,t)s6t,

P ∗s,t : P(Ωs)→ P(Ωs), (P ∗s,tν)(A) :=

∫
S

ps,t(x,A) ν(dx).

A time-inhomogeneous normal Markov process has the generators As, defined by

(Asf)(x) := lim
h→0

Ps,s+hf(x)− f(x)

h
,

with domain (which may depend on s) D(As), consisting of those functions f for
which the limit on the RHS is defined for every x (with the same possible restrictions
as in the time-inhomogeneous case).

It is left as an Exercise 6.2 to prove: Definition 2.1.7 extends Definition 2.1.1,
and the time-inhomogeneous version of Lemma 2.1.4 is true for (ps,t)s6t, ps,t(x,A) =
Ps,x(πst ∈ A), as well, i.e. (s, t, ζ) 7→ P ∗s,tζ has the flow property in P(S).

2.2 Fokker–Planck equations and Markov processes

Let S = Rd. We are now going to explore the relation between solutions to Fokker–
Planck equations and Markov processes. Consider locally bounded Borel coefficients
a = (aij)i,j6d, b = (bi)i6d on R+ × Rd such that a(t, x) is symmetric and nonneg-
ative definite for all (t, x) ∈ R+ × Rd, and the associated Fokker–Planck equation
(FPE).

For the following result, we omit details on the assumptions on the coefficients.
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2 Connection to Markov processes

Proposition 2.2.1. Suppose (Ps,x)s∈R+,x∈Rd is a time-inhomogeneous Markov process
with generator

(Asf)(x) = aij(s, x)∂2
ijf(x)+bi(s, x)∂if(x), C∞c (Rd) ⊆ D(As) ∀s ∈ R+. (2.2.1)

Assume sufficient regularity for a and b. Then t 7→ P ∗s,tδx is a weakly continuous
probability solution to the FPE

∂tµt = L∗a,bµt

on (s,∞) with initial condition µs = δx.

In the context of Markov processes, the FPE is also called Kolmogorov forward
equation.

Sketch of proof. Without loss of generality let s = 0 and set P ∗0,tδx =: µxt . For

f ∈ C∞c (Rd) and t > 0, we have

1

h

Å∫
Rd
f dµxt+h −

∫
Rd

dµxt

ã
= P0,t

Å
1

h

(
Pt,t+hf(x)− f(x))

ã
. (2.2.2)

Thus, for h→ 0 we have

lim
h→0

1

h

Å∫
Rd
f dµxt+h−

∫
Rd

dµxt

ã
= P0,t(Atf)(x) =

∫
Rd
La,bf(t, y) dµxt (y), (2.2.3)

i.e. d+

dt

∫
Rd f dµ

x
t =

∫
Rd La,bf(t, y) dµxt (y). It remains to justify that also the left

derivative of
∫
Rd f dµ

x
t exists and coincides with the RHS dt-a.s. Finally, integrating

over any interval [0, T ] gives the result.

Now assume the FPE is well-posed among probability solutions with global spatial
integrability. More precisely, assume:

(A1) For every (s, x) ∈ R+×Rd, there is a unique weakly continuous probability
solution µs,x = (µs,xt )t>s to (FPE) with initial condition µs,xs = δx such that aij , bi ∈
L1
(
[0, T ]× Rd;µs,xt dt

)
.

Theorem 2.2.2. Under assumption (A1), there is a unique time-inhomogeneous
Markov process (Ps,x)s>0,x∈Rd with Markovian transition function ps,t(x,A) = µs,xt (A),
and Ps,x is the law of the unique weak solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, Xs = x, t > s. (2.2.4)

As usual, σ in (2.2.4) is defined by a = 1
2σσ

T , and B is a d-dimensional standard
Brownian motion.

Proof. The uniqueness of the Markov process is clear, consider for instance the
time-inhomogeneous version of (2.1.4). (A1) allows to apply Theorem 1.3.6 in order
to obtain a family (Ps,x)s∈R+,x∈Rd such that Ps,x is the law of a weak solution to
(2.2.4). By Proposition 1.3.9, each Ps,x is the unique solution law with initial datum
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2 Connection to Markov processes

(s, x). To prove the Markov property, i.e. Definition 2.1.7 (ii), first note that for
ω ∈ Ωs the path measure Pr,πsr(ω) is the unique element in MPr,δπsr(ω)

(a, b). Denote

by (Q
(s,x),r
ω )ω∈Ωs a r.c.p. of Ps,x w.r.t. Fs,r. We use the fact that the assertion of

Lemma 1.3.2 (ii) remains true for any choice A = σ(πsu, s 6 u 6 t). We choose

A = Fs,r and obtain that the restriction Q
(s,x),r
ω,>r of Q

(s,x),r
ω to B(Ωr) is an element

of MPr,δπsr(ω)
(a, b), for Ps,x-a.e. ω. Thus

Q
(s,x),r
ω,>r = Pr,πsr(ω), Ps,x-a.s.

Since Ps,x(C|Fs,r)(ω) = Q
(s,x),r
ω (C), Ps,x-a.s., for each C ∈ B(Ωs) (with zero set

depending on C), we obtain, letting C = {πst ∈ A} for any t > s and B ∈ B(Rd):

Ps,x(πst ∈ B|Fs,r)(ω) = Q(s,x),r
ω (πst ∈ B) = Q

(s,x),r
ω,>r (πrt ∈ B) = Pr,πsr(ω)(π

r
t ∈ B), Ps,x−a.s.

Remark 2.2.3. If a and b are continuous in x and continuous in t locally uniformly
in x, then for the generator (As)s>0 of the time-inhomogeneous Markov process of
the previous proposition one has C2

c (Rd) ⊆ D(As) for all s > 0 and

Asf(x) = aij(s, x)∂2
ijf(x) + bi(s, x)∂if(x), ∀f ∈ C2

c (Rd).

Proof. Exercise 6.3.

The assertion can be generalized to less regular coefficients, but the proof is more
involved.
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3 Nonlinear Fokker–Planck equations

In this chapter we study nonlinear Fokker–Planck equations which, in contrast to
linear ones, consist of coefficients depending on the solution itself. This renders the
theory of existence and uniqueness of such equations considerably more difficult.
On the other hand, the nonlinearity allows to cover large classes of very important
nonlinear PDEs. Also the connection to probability theory gains a new compo-
nent, namely the theory of interacting particle systems. Nonlinear Fokker–Planck
equations belong to the most widely used equations in statistical mechanics and
physics, see for instance [11]. A standard reference for the nonlinear case is [8] and
the references therein. For more recent results, some references will be mentioned
throughout the chapter.

3.1 Definition, existence, uniqueness

Let aij , bi : R+×M×Rd → R, i, j 6 d, such that a(t, ζ, x) is pointwise nonnegative
definite and symmetric for all (t, ζ, x) ∈ R+ ×M+

b × Rd, where M is a subset of
M+
b (for instance, the set of measure absolutely continuous w.r.t. dx). We consider

nonlinear Fokker–Planck equations of type

∂tµt = ∂2
ij(aij(t, µt, x)µt)− ∂i(bi(t, µt, x)µt), t > 0 (3.1.1)

(simply considered as ”the NLFPE” in the sequel). For µ ∈ M, we set, for ϕ ∈
C2(Rd),

La,b,µϕ(t, x) = aij(t, µ, x)∂2
ijϕ(x) + bi(t, µ, x)∂iϕ(x).

As before, in general solutions are measure-valued curves t 7→ µt. One can consider
cases where a(t) and b(t) depend on

(
(µt)t>0, x

)
instead of (µt, x); also the case of

locally finite signed measures can be considered. We will, however, restrict ourselves
to the case presented above.

Examples. Global dependence. The prototype of nonlinear coefficients with global
measure dependence is

b(t, µ, x) =

∫
Rd
K(t, x, y)dµ(y), K : R+ × Rd × Rd → Rd, (3.1.2)

and likewise for a. Specifically, a common case is K(t, x, y) = ∇k(t, x − y) for
k : R+ × Rd → R. k is called a potential.

Local dependence. A very important class is given by coefficients of type

aij(t, µ, x) = ãij

Å
t,
dµ

dx
(x), x

ã
, bi(t, µ, x) = b̃i

Å
t,
dµ

dx
(x), x

ã
, i, j 6 d, (3.1.3)
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3 Nonlinear Fokker–Planck equations

where ãij , b̃i : R+ × R × Rd → R and dµ
dx (x) denotes the density of µ w.r.t. dx,

evaluated at x. Without further mentioning, we always consider the version of
dµ
dx which is 0 on those x ∈ Rd for which limr→0 dx(Br(0))−1µ(Br(x)) does not
exist in R. By Lebesgue’s differentiation theorem, the set of such x is a dx-zero set.
Then (µ, y) 7→ dµ

dx (y) is B(M+
b,�)⊗B(Rd)-measurable by [12, Sect.4.2.], where M+

b,�
denotes the subset of M+

b of measures absolutely continuous w.r.t. dx, equipped
with the topology of weak convergence of measures. The coefficients are defined on
R+×M+

b,�×Rd. This case is often called Nemytskii-case, and a and b as in (3.1.3)
are of Nemytskii-type.

In the Nemytskii-case, the NLFPE is often posed in density form

∂tu(t, x) = ∂2
ij

(
ãij(t, u(t, x), x)u(t)

)
− div

(
b̃(t, u(t, x), x)u(t)

)
,

i.e. in comparison with the general measure-valued formulation µt = u(t, x)dx.
Note that even if r 7→ ãij(t, r, x) is continuous for fixed (t, x), the map µ 7→

aij(t, µ, x) = ãij(t,
dµ
dx (x), x) is not continuous w.r.t. the weak or vague topology

(or, as a matter of fact, any other reasonable topology on M+
b ), since µ 7→ dµ

dx (x) is
not continuous between any of these topologies and R. Hence, in the Nemytskii-case,
one faces irregular coefficients.

We give a few important examples of NLFPEs of Nemytskii type.

(i) The classical Porous Media Equation (PME)

∂tu(t) = ∆(u(t)m), (t, x) ∈ (0,∞)× Rd,

m > 0, for the class of nonnegative solutions u > 0 can be written as

∂tu(t) = ∂2
ij(aij(u(t, x))u(t))

with aij(r) = δijr
m−1. Hence, the PME is a Nemytskii-type NLFPE in density

form. The cases m > 1 and m < 1 are called slow and fast diffusion case,
respectively (m = 1 gives the heat equation). The reason for these names is
that if u(x) → 0, for m > 1 and m < 1 the diffusion um−1 degenerates and
explodes, respectively.

(ii) More generally, consider the generalized PME

∂tu(t) = ∆β(u)− div
(
DB(u(t))u(t)

)
, (t, x) ∈ (0,∞)× Rd,

where β ∈ C1(R), β(0) = 0, D : Rd → Rd, B : R+ → R, which can be written
in NLFPE density form as

∂tu(t) = ∂2
ij(aij(u(t, x))u(t))− div

(
b(x, u(t, x))u(t)

)
,

with aij(r) = β(r)
r , b(x, r) = D(x)B(r), where β(0)

0 := β′(0).

(iii) Consider the p-Laplace equation

∂tu(t) = div(|∇u(t)|p−2∇u(t)), (t, x) ∈ (0,∞)× Rd.

29



3 Nonlinear Fokker–Planck equations

For a suitable subclass of solutions, it is equivalent to

∂tu(t) = ∆
(
|∇u(t)|p−2u

)
− div

(
∇(|∇u(t)|p−2)u(t)

)
,

which is a Nemytskii-type NLFPE in density form with coefficients

aij(u, x) = δij |∇u|p−2(x), bi(u, x) = ∂i|∇u|p−2(x).

(iv) The 2D Navier–Stokes equations in vorticity form can written as a Nemytskii-
type NLFPE in density form.

The definition of solutions in the nonlinear case is analogous to Definitions 1.2.1,
1.2.3, 1.2.4. We explicitly only state the following notion.

Definition 3.1.1. A Borel curve (µt)t>0 ⊆M solves (3.1.1) with initial value ν ∈M+
b ,

if (t, x) 7→ aij(t, µt, x), bi(t, µ, x) are Borel maps in L1
loc((0,∞)× Rd;µtdt), and for

every ϕ ∈ C∞c (Rd) there is a set Jϕ ⊆ (0,∞) of full dt-measure such that for all
t ∈ Jϕ∫

Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,µsϕdµsds. (3.1.4)

Compared to the linear case, here we omit a zero-order coefficient c (in general
also dependent on the solution). A bit more generally, one may require µt ∈M only
dt-a.s. and the existence of a Borel curve dt-version µ̃ of µ such that µ̃t ∈M for all
t > 0 such that∫

Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,µ̃sϕdµsds.

Remark 3.1.2. One could require the coefficients to be B(R+) ⊗ B(M+
b ) ⊗ B(Rd)-

measurable (where B(M+
b ) denotes the Borel σ-algebra w.r.t. either the weak or

vague topology). Then it follows that (t, x) 7→ a(t, µt, x) and (t, x) 7→ b(t, µt, x)
are product measurable on R+ × Rd for every Borel curve (µt)t>0 (Exercise 7.2).
We follow a slightly different approach by not requiring such a property, but instead
require any solution (µt)t>0 to render (t, x) 7→ a(t, µt, x) and (t, x) 7→ b(t, µt, x)
measurable. Conceptually, the latter is a weaker assumptions on the coefficients
without narrowing the notion of solution.

Linearized equations. A very important object related to the nonlinear FPE is
the family of associated linearized FPEs, obtained as follows: For any Borel curve
t 7→ µt ∈M+

b , consider the linear FPE

∂tνt = ∂2
ij

(
aij(µt)νt

)
− ∂i(bi(µt)νt), t > 0, (µ-`FPE)

where by aij(µt) and bi(µt) we abbreviate the map x 7→ aij(t, µt, x) and bi(t, µt, x),
respectively. For given µ = (µt)t>0, we denote this linear equation by (µ-`FPE).

Remark 3.1.3. (i) A solution (µt)t>0 to the nonlinear FPE in the sense of Def-
inition 3.1.1 with initial datum ν also solves (µ-`FPE), i.e. ”any nonlinear
FPE-solution solves its own linearized FPE as well”.
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3 Nonlinear Fokker–Planck equations

(ii) The coefficients of the linearized FPEs are time-dependent, even if the non-
linear coefficients itself are time-independent.

Taking into account (i) of the previous remark, many results for solutions to linear
equations can be proven for solutions to nonlinear equations as well. For instance,
we have

Lemma 3.1.4. The results of Lemma 1.2.5 hold analogously for solutions to (3.1.1).

Exact formulation and proof: Exercise 7.3.
Since (3.1.4) is invariant under changing (La,b,µt)t>0 to (La,b,µ̃t)t>0 for a Borel

curve dt-version µ̃ of µ, the consideration of the linearized equations yields the
following analog of Exercise 3.2.:

Lemma 3.1.5. Let µ = (µt)t>0 ⊆ M be a solution to the NLFPE with initial value
ν ∈M+

b such that ess supt>0 µt(Rd) <∞ and

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0,∞)× Rd;µtdt). (3.1.5)

Then there is a unique vaguely continuous dt-version µ̃ of µ, and µ̃ also solves
the NLFPE with initial datum ν.

If in addition the maps from (3.1.5) are in L1([0, T ] × Rd;µtdt) for all T > 0,
then µ̃(Rd) = ν(Rd) for all t > 0 and t 7→ µ̃t is weakly continuous.

Proof. Consider (µt)t>0 as a solution to (µ-`FPE). By (3.1.5), Exercise 3.2. applies
and yields a unique vaguely continuous version (µ̃t)t>0 with µ̃0 = ν, solving (µ-
`FPE). Hence (µ̃t)t>0 solves the NLFPE. The second part follows immediately
from Exercise 3.2.(ii).

Motivation: Interacting particle systems. Nonlinear Fokker–Planck equations ap-
pear naturally as the infinite particle limit for interacting particle systems. Let
N ∈ N, Bi, i 6 N , be independent standard Brownian motions on Rd and consider
the system of SDEs

dXN,i
t = b(t,XN,i

t , µN,it )dt+
√

2dBit, t > 0, i ∈ {1, . . . , N}, (3.1.6)

where

µN,it :=
1

N − 1

∑
j 6=i

δXN,it

is the empirical law of the other particles (w.r.t. to i). This system models the
evolution of N particles XN,i moving in Rd subject to an individual Brownian
motion Bi (its ”internal noise”). Via the dependence of b on µN,it , the evolution of

XN,i not only depends on the state XN,i
t , but also on all other particles XN,j . This

gives rise to the name interacting particle system. A typical time-independent case
(with which we continue from now on) is

b(t, x, µ) =

∫
Rd
K(x− y)dµ(y) = (K ∗ µ)(x),
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3 Nonlinear Fokker–Planck equations

K : Rd → Rd symmetric, i.e. K(x) = K(−x), and typically lim|x|→0K(x) = ∞
and K = ∇U for some U : Rd → R. In this case

b(XN,i
t , µN,it ) =

1

N − 1

∑
j 6=i

K(XN,i
t −XN,j

t ).

One is interested in the infinite particle limit N → ∞ (also called mean field

limit). Set νN,it := L(XN,i
t ), i.e. νN,i solves the linear FPE

∂tν
N,i
t = ∆νN,it − div

(
(K ∗ µN,it )νN,it

)
, t > 0.

Under suitable assumptions on the coefficients, one can often prove the following:

(i) For N →∞, (νN,it )t>0 has a weak limit (ζt)t>0, which does not depend on i.

(ii) (µN,it )t>0 weakly converges to (ζt)t>0.

(iii) ζ solves the NLFPE ∂tζt = ∆ζt − div
(
(K ∗ ζt)ζt

)
.

Interpretation: In the particle limit N → ∞, the interaction between particles
decays and the motion of all particles becomes statistically identical. In the limit,
one obtains not an interaction equation, but a NLFPE.

This phenomenon is often called propagation of chaos.

3.2 An existence result via a fixed point argument

Let T > 0 and Mb([0, T ] × Rd) be the linear space of signed measures with finite
total variation. For (µt)t∈[0,T ] ⊆ Mb(Rd) such that ess supt∈[0,T ] |µt|(Rd) < ∞, we

identify (µt)t∈[0,T ] with µ = µtdt ∈Mb([0, T ]× Rd).
Recall that Mb([0, T ] × Rd) is a normed space with the Kantorovich-Rubinstein

norm

||µ|| := sup
f∈Lip1

∫
fdµ,

where Lip1 denotes the set of Lipschitz functions from Rd to R with Lipschitz
constant less or equal to 1 which are also uniformly bounded by 1. Moreover, the
topology generated by this norm on the nonnegative halfspace M+

b ([0, T ] × Rd) is
the topology of weak convergence of measures.

We will use the following fixed point theorem by Schauder.

Theorem 3.2.1. Let X be a normed space, K ⊆ X a compact convex subset, and
F : K → K continuous. Then there is k ∈ K with F (k) = k.

For V : Rd → R+, T0 6 T and g ∈ C+([0, T ]) (the space of continuous maps from
[0, T ] to R+), define MT0,g(V ) as the set of nonnegative measures µ = (µt)t∈[0,T0]

in Mb([0, T0]× Rd)) such that∫
Rd
V dµt 6 g(t), ∀t ∈ [0, T0].
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3 Nonlinear Fokker–Planck equations

Let aij , bi be defined on [0, T ]×M+
b ×Rd. We will prove an existence result for the

NLFPE (3.1.1) under the following assumptions.
(H1). There is V ∈ C2(Rd,R+), V > 0, lim|x|→∞ V (x)→∞, and maps Λ1,Λ2 :

C+([0, T ]) → C+([0, T ]) such that for all T0 ∈ (0, T ] and g ∈ C+([0, T ]): For all
(t, ν, x) ∈ [0, T ]×MT0,g(V )× Rd

La,b,νV (t, x) 6 Λ1[g](t) + Λ2[g](t)V (x).

From now on, we fix V (but not T0 or g) and write MT0,g instead of MT0,g(V ).

Definition 3.2.2. We say a sequence µn = (µnt )t∈[0,T0] in MT0,g is V -convergent to
µ = (µt)t∈[0,T0] in MT0,g if

lim
n→∞

∫
Rd
f dµnt =

∫
Rd
f dµt

for all f ∈ C(Rd) such that lim|x|→∞
f(x)
V (x) = 0. In particular, V -convergence implies

weak convergence.

(H2). For all T0 ∈ (0, T ], g ∈ C+([0, T ]), ν ∈MT0,g, the maps

t 7→ aij(t, νt, x), t 7→ bi(t, νt, x)

are Borel on [0, T0] for each fixed x, locally bounded in x uniformly in (t, ν) ∈
[0, T0]×MT0,g, and x-locally equicontinuous in (t, ν). Moreover, if µn V -converges
to µ in MT0,g, then

aij(t, µ
n
t , x)→ aij(t, µt, x), bi(t, µ

n
t , x)→ bi(t, µt, x), ∀(t, x) ∈ [0, T0]× Rd.

(H3). For all T0 ∈ (0, T ], g ∈ C+([0, T ]) and ν ∈ MT0,g, a(t, νt, x) is symmetric
and nonnegative definite for all (t, x) ∈ [0, T0]× Rd.
Theorem 3.2.3. Suppose (H1)-(H3) are satisfied, and let µ0 ∈ P such that V ∈
L1(Rd, µ0).

(i) There is T0 6 T such that the NLFPE has a weakly continuous probability
solution on [0, T0] with initial datum µ0.

(ii) If Λ1,Λ2 from (H1) are constant from C+([0, T ]) to C+([0, T ]), then T0 = T .

In both cases, this solution (µt)t∈[0,T0] satisfies

sup
t∈[0,T0]

∫
Rd
V dµt <∞ (3.2.1)

and

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0, T0]× Rd;µtdt).

The proof proceeds via several steps:

(a) Case of a nondegenerate and sufficiently smooth diffusion matrix a;

(b) Degenerate and sufficiently smooth case;

(c) General case (i.e. only (H1)-(H3) are assumed).

Due to time constraints, we only give details regarding (a). The remaining parts
are left as reading exercise 8.2.
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3 Nonlinear Fokker–Planck equations

3.2.1 Proof of Theorem 3.2.3.

For part (a), we replace (H3) by the following stronger assumption.
(H3’). (H3) holds, and in addition for each T0 ∈ (0, T ], g ∈ C+([0, T ]), ν ∈MT0,g

and compact U ⊆ Rd, there is λ = λ(ν, U) > 0 such that a(t, νt, x) > 0 for all
(t, x) ∈ [0, T0]× Rd and

|a(t, νt, x)− a(t, νt, y)| 6 λ(ν, U)|x− y|, ∀x, y ∈ U, t ∈ [0, T0].

Moreover, assume there are finite constants Ci = Ci(ν) such that

|
»
a(t, νt, x)∇V (x)| 6 C1 + C2V (x), ∀(t, x) ∈ [0, T0]× Rd.

Let T0 6 T , g ∈ C+([0, T ]) and ν ∈ MT0,g. Then by [20, Thm.3.1], assumptions
(H1),(H2),(H3’) imply the existence of a unique weakly continuous probability so-
lution ζ = ζ(ν) to (ν-`FPE) on [0, T0] with initial datum µ0 such that

[(t, x) 7→ aij(t, νt, x)], [(t, x) 7→ bi(t, νt, x)] ∈ L1
loc([0, T0]× Rd; ζtdt).

Hence we may consider the map

Q : MT0,g →Mb([0, T0]× Rd), Q(ν) := ζ(ν).

Note that Q depends on T0, g (and V ).

Remark 3.2.4. Suppose there is T0 6 T, g ∈ C+([0, T ]) such that

(I) MT0,g ⊆Mb([0, T0]× Rd) is convex and compact;

(II) Q is continuous on MT0,g and Q
(
MT0,g

)
⊆MT0,g.

Then, by Schauder’s fixed point theorem, there is a fixed point of Q in MT0,g. This
fixed point is a weakly continuous solution to the NLFPE with initial datum µ0 and
satisfies the final assertion of Theorem 3.2.3.

We will prove (I)+(II) for a subset NT0,g ⊂MT0,g, which is obviously sufficient.

Indeed, define NT0,g as the subset of MT0,g consisting of those (µt)t∈[0,T0] such

that for all ϕ ∈ C∞c (Rd)∣∣∣∣ ∫
Rd
ϕdµt −

∫
Rd
ϕdµs

∣∣∣∣ 6 Λ(T0, g, ϕ)|t− s|, ∀t, s ∈ [0, T0], (3.2.2)

where Λ(T0, g, ϕ) := sup(t,ν,x)∈[0,T0]×MT0,g
×Rd{|La,b,νϕ(t, x)|}. This value is finite

due to (H2).

Lemma 3.2.5. Every sequence µn = (µnt )t∈[0,T0] in NT0,g has a weakly convergent
subsequence (µnk) with limit µ ∈ NT0,g. Moreover, for each t ∈ [0, T0], µnkt weakly
converges to µt.

The first part of the assertion just means that NT0,g ⊆Mb([0, T0]×Rd) is sequen-
tially compact.
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Proof. Exercise 8.1.

Corollary 3.2.6. NT0,g ⊆Mb([0, T0]× Rd) is convex and compact.

Proof. For the convexity, note that (3.2.2) is stable w.r.t. convex combinations and
that MT0,g is convex by definition. Since the topology of Mb([0, T ]×Rd) is induced
by a norm, a subset M ⊆Mb([0, T0]×Rd) is compact if and only if it is sequentially
compact. The latter holds for NT0,g by the previous lemma.

Lemma 3.2.7. If a sequence µn weakly converges to µ in NT0,g, then µn V -converges
to µ.

Proof. First note that µnt weakly converges to µt for all t ∈ [0, T0]. Indeed, let
t ∈ [0, T0]. By Lemma 3.2.5, each subsequence µnl has a further subsequence µnlk

such that µ
nlk
t weakly converges to µt. Hence, µnt weakly converges to µt.

Also note: Since g is bounded on [0, T ] and there is σ > 0 such that V (x) > σ
for all x ∈ Rd, it follows that supµ∈MT0,g

{µt(Rd), t ∈ [0, T0]} 6 c0 < ∞, with

c0 := |g|∞[infx∈Rd V (x)]−1

Let now f ∈ C(Rd) such that lim|x|→∞
f(x)
V (x) = 0. Set h(x) := f(x)

V (x) , i.e. h ∈
C0(Rd) (the set of continuous functions vanishing at infinity). Hence, for ε > 0,
there is ψ ∈ Cc(Rd) with |h− ψ|∞ < ε. Then∣∣∣∣ ∫

Rd
f dµnt −

∫
Rd
f dµt

∣∣∣∣ =

∣∣∣∣ ∫
Rd
hV dµnt −

∫
Rd
hV dµt

∣∣∣∣
6

∣∣∣∣ ∫
Rd
ψV dµnt −

∫
Rd
ψV dµt

∣∣∣∣+ 2ε|g|∞.

Since ψV ∈ Cb(Rd), µnt → µt weakly and ε > 0 was arbitrary, the claim follows.

Lemma 3.2.8. If Q(NT0,g) ⊆ NT0,g for some T0 6 T , g ∈ C+([0, T ]), then Q is
continuous on NT0,g.

Proof. Since the topology on NT0,g ⊆ Mb([0, T0] × Rd) is induced by a norm, it
suffices to prove sequential continuity. So, let µn, µ ∈ NT0,g such that µn → µ
weakly, and set ζn := Q(µn). Since ζn ∈ NT0,g, for any subsequence of ζn, Lemma
3.2.5 yields a further subsequence ζnkl with limit ζ ∈ NT0,g. A priori, this limit
depends on {nkl}, but we will show ζ = Q(µ), which then implies that ζn weakly
converges to Q(µ). We now denote ζnkl by ζn. Lemma 3.2.5 also implies the
weak convergence ζnt → ζt for all t ∈ [0, T0]. Moreover, Lemma 3.2.7 implies V -
convergence of µn to µ.

Let t ∈ [0, T0]. By (H2), the maps x 7→ aij(t, µ
n
t , x) converge pointwise to

aij(t, µt, x), are locally in x uniformly in n bounded and locally in x uniformly
in n equicontinuous. Hence, by the Arzela-Ascoli theorem, they converge locally
uniformly. The same is true for the convergence of bi(t, µ

n
t , x) to bi(t, µt, x).

Next we show ζ = Q(µ). Let ϕ ∈ C∞c (Rd). Then, since Q(µn) = ζn, we have∫
Rd
ϕdζnt −

∫
Rd
ϕdµ0 =

∫ t

0

∫
Rd
La,b,µnϕdζ

n
s ds, t ∈ [0, T0].
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We have∫
Rd
La,b,µnϕdζ

n
s =

∫
Rd

(
La,b,µnϕ− La,b,µϕ

)
dζns +

∫
Rd
La,b,µϕdζ

n
s ,

where the first summand on the RHS converges to 0 as n→∞ and the second one
converges to

∫
Rd La,b,µϕdζs. Since |La,b,µnϕ(t, x)| 6 Λ(T0, g, ϕ) <∞, we can apply

Lebesgue’s dominated convergence theorem to obtain

lim
n→∞

∫ t

0

∫
Rd
La,b,µnϕdζ

n
s ds =

∫ t

0

∫
Rd
La,b,µϕdζds.

Now the weak convergence ζnt → ζt for all t ∈ [0, T0] yields the claim.

The next lemma is the final preliminary step for finding suitable T0 and g to
apply the previous lemma.

Lemma 3.2.9. Suppose ν ∈ NT0,g, ζ = Q(ν). Then, for all t ∈ [0, T0],∫
Rd
V dζt 6 S[g](t) +R[g](t)

∫
Rd
V dµ0,

where

R[g](t) := exp

Å∫ t

0

Λ2[g](s)ds

ã
, S[g](t) := R[g](t)

∫ t

0

Λ1[g](s)ds.

Proof. Let ν be as in the assertion and ηm ∈ C∞(R+) such that 0 6 η′m(x) 6 1,
η′′m 6 0, ηm(x) = x if x 6 m − 1, ηm(x) = m if x > m. Recall that by definition ζ
satisfies for all ϕ ∈ C2

c (Rd)∫
Rd
ϕdζt −

∫
Rd
ϕdµ0 =

∫ t

0

∫
Rd
La,b,νϕdζsds, ∀t ∈ [0, T0].

Choose ϕ(x) := ηm ◦ V (x)−m, and note

La,b,νϕ(t, x) = η′m(V (x))La,b,νV (t, x) + η′′m(V (x))a(t, νt, x)∇V (x) · ∇V (x).

Therefore∫
|V |6m−1

V dζt 6
∫
Rd
ηm(V ) dζt 6

∫
Rd
V dµ0+

∫ t

0

∫
|V |6m

η′m(V (x))La,b,νV (s, x) dζs(x)ds.

Since η′m 6 1 and since (H1) entails∫ t

0

∫
|V |6m

La,b,νV (s, x) dζsds 6
∫ t

0

Å
Λ1[g](s) + Λ2[g](s)

∫
|V |6m

V dζs

ã
ds,

we arrive, by letting m→∞, at∫
Rd
V dζt 6

∫
Rd
V dµ0 +

∫ t

0

Å
Λ1[g](s) + Λ2[g](s)

∫
Rd
V dζs

ã
ds.
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Now Gronwall’s lemma yields∫
Rd
V dζt 6

ï∫
Rd
V dµ0 +

∫ t

0

Λ1[g](s)ds

ò
exp

Å∫ t

0

Λ2[g](s)ds

ã
,

which is the claim.

Finally, for both (i) and (ii) of the theorem, we find T0 6 T and g ∈ C+([0, T ])
such that Q(NT0,g) ⊆ NT0,g:

Corollary 3.2.10. There is T0 6 T and g ∈ C+([0, T ]) constant and strictly positive
such that Q(NT0,g) ⊆ NT0,g. Moreover, if the mappings Λ1 and Λ2 are constant,
then one can choose T0 = T .

Proof. By the previous lemma, we have for any ν ∈ NT0,g, ζ = Q(ν), T0 6 T, g ∈
C+([0, T ]) ∫

Rd
V dζt 6 S[g](t) +R[g](t)

∫
Rd
V dµ0.

For any choice of g, note that S[g](t) → 0 and R[g](t) → 1 as t → 0. Set g :=
2
∫
Rd V dµ0 + 1 and choose T0 = T0(g) such that S[g](t) 6 1 and R[g](t) 6 2 for all

t ∈ [0, T0]. Then ∫
Rd
V dζt 6 g(t), ∀t ∈ [0, T0].

So, Q(NT0,g) ⊆ MT0,g, and the claim follows, since (3.2.2) is fulfilled for every
element in the range of Q.

For the second part, first note that S and R do not depend on g, since they are
functions of Λ1,Λ2, which are now independent of g by assumption. Set

g(t) := max
t∈[0,T ]

Å
S(t) +R(t)

∫
Rd
V dµ0

ã
, ∀t ∈ [0, T ].

Then, obviously
∫
Rd V dζt 6 g(t) for all t ∈ [0, T ]. Hence, similarly as above, we

conclude Q(NT,g) ⊆ NT,g.

We can now complete the proof of Theorem 3.2.3 as follows:
For (i) and (ii) of the assertion, consider T0 and g as in the previous corollary,

respectively, such that Q(NT0,g) ⊆ NT0,g. By Lemma 3.2.8 Q is continuous on
NT0,g. Since Corollary 3.2.6 implies that NT0,g is a convex and compact subset of
the normed space Mb([0, T0] × Rd), we may apply Schauder’s fixed point theorem
to obtain a fixed point µ = (µt)t∈[0,T0] ∈ NT0,g of Q, i.e. Q(µ) = µ. As explained
in Remark 3.2.4, µ is the solution from the assertion. µ ∈ NT0,g yields (3.2.1).

3.3 McKean–Vlasov SDEs

Consider coefficients aij , bi as in the beginning of Subsection 3.1, let σ : R+ ×
P × Rd → Rd×d be such that 1

2σσ
T = a pointwise, and let B denote a standard

d-dimensional Brownian motion.
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3 Nonlinear Fokker–Planck equations

In this section, we consider the following SDEs related to the measure-dependent
coefficients b and σ

dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dBt, t > 0. (3.3.1)

Such equations are often called McKean–Vlasov SDEs or distribution-dependent
SDEs, short DDSDEs. In contrast to the classical ”linear” case, here the drift
vector and diffusion matrix depend not only on the current position, but also on
the distribution of the solution.

For a partial literature overview on DDSDEs, see Exercise sheet 9.

Motivation: Interacting particle systems, continued. Consider the interacting par-
ticle system from Section 3.1. In the infinite particle limit, one can often prove

XN,i N→∞−−−−→ X for every i in a suitable sense, and that X solves (3.3.1). So,
McKean–Vlasov SDEs model the evolution of a(ny) particle in the infinite-particle
limits of interacting particle systems.

The following definition is completely analogous to the non-distribution depen-
dent case.

Definition 3.3.1. A weak solution to (3.3.1) is a triple, consisting of a filtered
probability space (Ω,F, (Ft)t>0,P), a d-dimensional standard (Ft)-Brownian mo-
tion and an (Ft)-adapted Rd-valued stochastic process X = (Xt)t>0 on Ω such that
(t, ω) 7→ b(t,Xt(ω),LXt) and (t, ω) 7→ σ(t,Xt(ω),LXt) are B(R+)⊗ F-measurable,

E
ï∫ T

0

|b(t,Xt,LXt)|+ |σ(t,Xt,LXt)|2 dt
ò
<∞, ∀T > 0,

and P-a.s.

Xt = X0 +

∫ t

0

b(s,Xs,LXs)ds+

∫ t

0

σ(s,Xs,LXs)dBs, ∀t > 0.

As in the non-distribution dependent case, we call LX0
the initial condition (or

datum) of X.
Solutions are weakly unique for initial condition µ0, if LX0 = µ0 = LY0 implies

LX = LY for any weak solutions X,Y .

It is obvious how to extend the previous definition to initial times s > 0.
As for nonlinear Fokker–Planck equations, one can also consider linearized DDS-

DEs, i.e. one first fixes a curve t 7→ νt of probability measures in the coefficients
and then studies the non-distribution dependent SDE with coefficients (t, x) 7→
b(t, νt, x), σ(t, νt, x). We denote this SDE by (ν-`SDE).

However, the name linearized DDSDE is misleading, as the coefficients are typi-
cally nonlinear in x. Equation (ν-`SDE) is equivalent to the system®

dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dBt,

LXt = νt, ∀t > 0.
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3 Nonlinear Fokker–Planck equations

Remark 3.3.2. It is straightforward to check that any weak DDSDE-solution X is a
weak solution to (ν-`SDE) with νt := LXt .

One can also consider the distribution-dependent martingale problem (also called
nonlinear martingale problem) associated with the DDSDE (3.3.1), and one has
the same equivalence of existence and uniqueness of weak solutions to (3.3.1) and
solutions to this nonlinear martingale problem as in the ”linear” case ( Exercise 9.1).

From DDSDEs to NLFPEs. As might be expected, the relation from (3.3.1) to the
NLFPE (3.1.1) is similar to the ”linear” case.

Proposition 3.3.3. Let X be a weak solution to (3.3.1). Then, µ = (µt)t>0, µt :=
LXt is a weakly continuous probability solution to the NLFPE with coefficients b
and a, where a = 1

2σσ
T pointwise. Moreover, aij(t, µt, x), , bi(t, µt, x) ∈ L1([0, T ]×

Rd;µtdt) for all T > 0.

Proof. Exercise 9.2.

In particular: One method to construct weakly continuous probability solutions
to NLFPEs is to first solve the corresponding DDSDE and then consider the curve
of one-dimensional time marginals of the solution of the latter. There is, of course,
a list of further methods to prove existence and uniqueness for DDSDEs, but we
will not discuss such results here, except for one classical result below. Please see
Exercise sheet 9 for literature on results in this direction.

Well-posedness under Wasserstein-Lipschitz- and monotonicity assumptions. Con-
sider for p ∈ [1,∞) the p-Wasserstein space

Pp :=

ß
ζ ∈ P :

∫
Rd
|x|p dζ(x) <∞

™
and, for ζ, ν ∈ Pp, the p-Wasserstein distance

Wp(ζ, ν) := inf
Λ∈C(ζ,ν)

Å∫
Rd×Rd

|x− y|p dΛ(x, y)

ã 1
p

,

where C(ζ, ν) is the set of all couplings between ζ and ν. A coupling between ζ
and ν is any Borel probability measure Λ on Rd ×Rd such that Λ ◦ (π1)−1 = ζ and
Λ ◦ π2)−1 = ν. C(ζ, ν) is non-empty, since ζ ⊗ ν ∈ C(ζ, ν). Here we denote by
πi : Rd × Rd → Rd the projection on the i-th component.

The spaces (Pp,Wp) are complete (!) metric (!) spaces and are used frequently
in the study of DDSDEs and other aspects of stochastic analysis.

Consider p > 1, product-measurable coefficients σij , bi defined on R+ × P × Rd
with the following assumptions. Pp is always equipped with the topology induced
by Wp.

(A0) b(t, ·, ·) is continuous on Pp × Rd for all t > 0.
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(A1) ∃ K1,K2 ∈ C(R+,R+) non-decreasing such that for all t > 0, ζ, ν ∈ Pp, x, y ∈
Rd

|σ(t, ζ, x)− σ(t, ν, y)|2 6 K1(t)|x− y|2 +K2(t)Wp(ζ, ν)2.

(A2) 2(b(t, ζ, x)− b(t, ν, y)) · (x− y) 6 K1(t)|x− y|2 +K2(t)Wp(ζ, ν)|x− y|.

(A3) b is bounded on bounded sets in R+ × Pp × Rd, and

|b(t, ζ, 0)|p 6 K1(t)
(
1 + ζ(| · |p)

)
,

where ζ(| · |p) =
∫
Rd |x|

p dζ(x).

Theorem 3.3.4 (Thm.2.1 from [21]). Assume there is p > 1 such that (A0)-(A3)
are satisfied. If p < 2, additionally assume K2 = 0. Then for every initial datum
µ0 ∈ Pp, the DDSDE has a unique weak solution X(µ0) with LXt ∈ Pp for all t > 0.

Moreover, if µ0 ∈ Pq for q > p, then

E
ï

sup
t∈[0,T ]

|X(µ0)t|q
ò
<∞, ∀T > 0.

Finally, there is ψ ∈ C(R+,R+) non-decreasing such that

Wp

(
LX(ζ)t ,LX(ν)t

)p
6 Wp

(
ζ, ν
)p
e
∫ t
0
ψ(r)dr, ∀t > 0.

Remark 3.3.5. Under assumptions (A0)-(A3) one can actually prove that solutions
are probabilistically strong and strongly (i.e. pathwise) unique, see [21] for details.

3.4 Superposition principle: nonlinear case

Unless stated otherwise, the results of this section hold for any initial time s > 0
instead of 0. Analogous to the linear case, we have the following superposition
principle-result for nonlinear FPEs.

We refer to (3.1.1) and (3.3.1) as ”the NLFPE” and ”the DDSDE”, respectively.
For the following result, see [4, 5]

Theorem 3.4.1 (Superposition principle: nonlinear case). Let µ = (µt)t>0 be a
weakly continuous probability solution to the NLFPE (3.1.1) in the sense of Defini-
tion 3.1.1 such that

[(t, x) 7→ bi(t, µt, x)], [(t, x) 7→ aij(t, µt, x)] ∈ L1([0, T ]×Rd;µtdt), ∀T > 0. (3.4.1)

Then there is a weak solution X to the corresponding DDSDE (3.3.1) such that
LXt = µt for all t > 0. In particular, X and µ have the same initial condition.

Remark 3.4.2. (i) The assertion can equivalently be formulated via the corre-
sponding nonlinear martingale problem instead of the DDSDE, compare The-
orem 1.3.6.
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3 Nonlinear Fokker–Planck equations

(ii) Note that there is no regularity assumption on the coefficients, neither in their
space- or measure-argument. In particular, the theorem applies to coefficients
of Nemytskii-type.

(iii) The integrability assumption can be weakened to

[
(t, x) 7→ |aij(t, µt, x)|+ |b(t, µt, x) · x|

1 + |x|2
]
∈ L1([0, T ]× Rd;µtdt), ∀T > 0.

Proof of Theorem 3.4.1. (µt)t>0 is a solution to (µ-`FPE) and, by assumption, sat-
isfies (1.3.2) with coefficients (t, x) 7→ aij(t, µt, x) and (t, x) 7→ bi(t, µt, x). Hence
by Theorem 1.3.6, there is a weak solution to (µ-`SDE) X with LXt = µt, t > 0.
Therefore, X solves the DDSDE, which yields the claim.

As in the linear case, the dual statement gives a uniqueness criterion for the
NLFPE:

Corollary 3.4.3. If there is at most one weak solution to the DDSDE with initial
datum ζ, then there is at most one weakly continuous probability solution µ to the
associated NLFPE with initial condition ζ satisfying∫ T

0

∫
Rd
aij(t, µt, x)|+ |bi(t, µt, x)| dµtdt <∞, ∀T > 0.

Proof. By Theorem 3.4.1, any two such NLFPE-solutions can be lifted to a weak so-
lution to the associated DDSDE. By assumption, in particular the one-dimensional
time marginals of these solutions coincide, which yields the claim.

It is left as Exercise 10.1. to write down explicitly the corresponding DDSDEs
for the NLFPE-examples from Section 3.1.

It is a natural question whether Proposition 1.3.9 extends to the nonlinear case.
This is the content of the next result which shows the importance of the linearized
equation associated with a NLFPE.

Proposition 3.4.4. Let µ0 ∈ P. Assume:

(i) The NLFPE has a unique weakly continuous probability solution µ with initial
condition µ0.

(ii) The linear FPE (µ-`FPE) has a unique weakly continuous probability solution
for every initial condition (s, δx).

Then weak solutions for the DDSDE with initial condition µ0 are unique.

Proof. Let X and Y be weak solutions to the DDSDE with initial condition µ0.
By Proposition 3.3.3, µ1 := (LXt)t>0 and µ2 := (LYt)t>0 are weakly continuous
probability solutions to the NLFPE with initial condition µ0. Hence, the assumption
implies µi = µ, i ∈ {1, 2}, where µ is the solution from (i). So, X and Y are weak
solutions to (µ-`SDE). So, by Propositions 1.3.9 and 1.3.10, the claim follows.
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Remark 3.4.5. Let X be a weak solution to the DDSDE with initial condition µ0

and denote by (Qx)x∈Rd the disintegration family of LX w.r.t. π0. In contrast to
the linear case (see Lemma 1.3.2), it is not true in general that for µ0-a.e. x the
measure Qx is a solution law to the same equation as X. In fact, considering X as
a solution to its own linearized SDE, it follows from Lemma 1.3.2 (i) that µ0-a.e.
Qx is a solution law to this linearized SDE. Since in general LQx(t) 6= LXt (unless
µ0 is a Dirac measure), the latter equation is not the same as the original DDSDE.

Therefore, the uniqueness of weak solutions to the DDSDE for all Dirac initial
data does not imply weak uniqueness for all initial data. Note that in Proposition
1.3.10 this was proven in the linear case.

DDSDEs and Markov processes. In Theorem 2.2.2, we particularly proved the fol-
lowing: If a ”linear” (i.e. non-distribution dependent) time-homogeneous SDE has
a unique weak solution law Px for all initial data δx, x ∈ Rd, then (Px)x∈Rd is a
Markov process (in the canonical model). For the proof, we heavily used the sta-
bility of the associated linear martingale problem w.r.t. disintegration, i.e. Lemma
1.3.2, which – as said in the previous remark – fails in the case of a distribution-
dependent SDE/a nonlinear martingale problem. As a consequence, we have:

Fact. The family of weak solution laws (Px)x∈Rd of a weakly well-posed DDSDE
is, in general, not a Markov process.

One possible solution is to assume that for every νx = (νxt )t>0, νxt := Px◦π−1
t , the

SDE (νx-`SDE) is weakly well posed. Then, by Theorem 2.2.2, there is a family of
Markov processes (P xy )y∈Rd , where P xy denotes the unique weak solution law to (νx-
`SDE) with initial condition δy. This way, each Px is a member of a Markov process,
namely Px = P xx . The issue with this ansatz is the additional assumption on the
well-posedness of the family (!) of linearized SDEs and, even more, the fact that
the family of families (P xy )y∈Rd , x ∈ Rd, contains a lot of irrelevant ”information”
with regard to (Px)x∈Rd .

We will present a different, more suitable, solution later on.
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equations

Let aij , bi : R+ × P × Rd → R be such that a = (aij)i,j6d is pointwise symmetry
and nonnegative definite, and consider our usual NLFPE

∂tµt = ∂2
ij

(
aij(t, µt, x)µt

)
− div

(
bi(t, µt, x)µt

)
(4.0.1)

For (s, ζ) ∈ R+ × P, denote by Ss and Ss,ζ the sets of its weakly continuous prob-
ability solutions from time s and the subset of those solutions with initial datum
(s, ζ), respectively.

In this chapter, we address the following question: Assume |Ss,ζ | > 1 for all
(s, ζ) ∈ R+×P. Is there µs,ζ ∈ Ss,ζ such that (µs,ζ)s∈R+,ζ∈P has the flow property,
i.e.

µs,ζt = µ
r,µs,ζr
t , ∀0 6 s 6 r 6 t, ζ ∈ P?

This is the same notion of flow as in (2.1.1). We call such a family a flow selection
for (4.0.1).

We will ask the same question for an a priori chosen subset of initial data P0 ⊆ P.
In this case, one also has to check that the flow leaves P0 invariant.

Remark 4.0.1. (i) If |Ss,ζ | = 1, the family of unique elements µs,ζ ∈ Ss,ζ has the
flow property (Exercise 10.2). Note that this is not true if we consider the
case of ’non-Markovian’ coefficients, i.e. when a(t) and b(t) depend not only
on (µt, x), but on ((µr)r6t, x) for a solution µ.

(ii) The importance of a flow selection for (4.0.1) will become apparent in the next
chapter.

Here we present two very different methods to give positive answers to this ques-
tion: In Section 4.1, we construct a family of solutions with the flow property; in
Section 4.2, we select solutions µs,ζ ∈ Ss,ζ such that this selected family has the
flow property.

4.1 Crandall-Liggett semigroup-method

An excellent reference for the contents of this section is the monograph [2].

4.1.1 Accretive and dissipative operators in Banach spaces

Let X be a Banach space with norm | · |X . We simply write | · |, if no confusion
with the standard Euclidean norm on R can occur. By I we denote the identify
operator, I : X → X, Ix = x.
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Definition 4.1.1. (i) An operator (A,D(A)), A : D(A) ⊆ X → X, is called accre-
tive, if

|x− y| 6 |x− y + λ(Ax−Ay)|, ∀λ > 0, x, y ∈ D(A). (4.1.1)

(ii) An accretive operator is called m-accretive, if R(I + λA) = X for all λ > 0,
where R(I + λA) denotes the range of I + λA : D(A) ⊆ X → X.

(iii) (A,D(A)) is called quasi m-accretive, if there is ω ∈ R such that (A+ωI,D(A))
is m-accretive.

(iv) (A,D(A)) is called dissipative, m-dissipative, quasi m-dissipative, if (−A,D(A))
is accretive, m-accretive, quasi m-accretive, respectively.

’accretive’ = dt. ’wachsend, zunehmend ’.
In fact, one can show that (A,D(A)) is accretive if and only if it satisfies the

inequality from (4.1.1) for some λ > 0, and m-accretive if and only if it is accretive
and R(I + λA) = X for some λ > 0.

Remark 4.1.2. We write Ax for A(x), x ∈ D(A), but (A,D(A)) is NOT assumed
to be linear. In fact, considering nonlinear accretive operators will be essential in
the sequel.

4.1.2 Differential equations in Banach spaces

Let (A,D(A)) be an operator on X, T > 0, and consider the Cauchy problem

y′(t) = Ay(t), y(0) = y0, (4.1.2)

where y0 ∈ X.
The equality is understood in X. This raises two immediate questions: What is

the meaning of y′(t)? Second, to solve this equation pointwise, one needs y(t) ∈
D(A), which is hard (think for instance of X = L2(Rd) and A being a differential
operator). There is a theory of strong solutions to such Cauchy problems, where
both questions are taking into account. We will, however, focus on a different notion
of solution.

Definition 4.1.3. Let T > 0, ε > 0.

(i) An ε-discretization of [0, T ] is any partition pε(t0, . . . , tN ), given by 0 = t0 6
t1 6 . . . 6 tN 6 T such that T − tN 6 ε and ti − ti−1 6 ε, i ∈ {1, . . . , N}.

(ii) A pε(t0, . . . , tN )-solution to (4.1.2) on [0, T ] is a piecewise constant function
z : [0, tN ] → X whose values zi on (ti−1, ti) satisfy the implicit difference
scheme

zi = (ti − ti−1)Azi + zi−1,

for all i ∈ {1, . . . , N}, and z(0) := z0 := y0.

(iii) For ε > 0, an ε-approximate solution to the Cauchy problem (4.1.2) on [0, T ]
is any pε(t0, . . . , tN )-solution for any ε-discretization pε(t0, . . . , tN ).
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4 Flow selections for nonlinear Fokker–Planck equations

Definition 4.1.4. A mild solution to the Cauchy problem (4.1.2) on [0,∞) is a
function y ∈ C([0,∞), X) such that for each ε > 0 and T > 0 there is an ε-
approximate solution zε to (4.1.2) on [0, T ] such that supt6T |y(t)− zε(t)| 6 ε.

The usefulness of this solution notion stems from the famous Crandall–Liggett
nonlinear semigroup result:

Theorem 4.1.5 (Crandall-Liggett nonlinear semigroup theorem, cf. Thm.4.1 of [2]).
Let (A,D(A)) be quasi m-dissipative and y0 ∈ D(A) (the closure of D(A) in X).
Then the Cauchy problem (4.1.2) has a unique mild solution y = y(y0) on R+, and
it is given by

y(t) = lim
n→∞

Å
I − t

n
A

ã−n
y0, t > 0 (4.1.3)

where the convergence holds locally uniformly in t on R+.

Remark 4.1.6. The exponential formula (4.1.3) justifies to also write y(y0)(t) =
exp(tA)(y0), and it is readily seen that S(t, y0) := y(y0)(t) has the (time-homogeneous)
flow property S(t+ s, y0) = S(t, S(s, y0)), ∀t, s > 0, y0 ∈ D(A).

Application to NLFPEs. Consider, for instance, the generalized PME

∂tu = ∆β(u)− div
(
DB(u)u

)
, (t, x) ∈ (0,∞)× Rd (4.1.4)

(see Example (ii) in Section 3.1) under suitable assumptions for β,D,B. In partic-
ular: β ∈ C2(R), D,B bounded. To treat this equation via the Crandall–Liggett
method, consider the operator (A0, D(A0)) on L1(Rd), defined by

A0 : D(A0) ⊆ L1(Rd)→ L1(Rd), A0y := ∆β(y)− div(DB(y)y)

with domain

D(A0) := {y ∈ L1(Rd) : β(y) ∈ L1
loc(Rd), ∆β(y)− div(DB(y)y) ∈ L1(Rd)}.

∆β(y) and div(DB(y)y) are taken in the sense of distributions [which requires only
β(y), DB(y)y ∈ L1

loc(Rd)], and it is only assumed that their sum is in L1(Rd). One
can show (cf. [3])

(i) R(I − λA0) = L1(Rd), ∀λ > 0;

(ii) There is a restriction (A,D(A)) of (A0, D(A0)), i.e. D(A) ⊆ D(A0) and
A = A0 on D(A), such that (i) also holds for A, and (A,D(A)) is dissipative
in L1(Rd);

(iii) D(A) = L1(Rd), where the closure is taken in L1(Rd).

So, Theorem 4.1.5 implies the existence of a unique mild solution u = u(u0) for

u′(t) = Au(t), y(0) = u0 (4.1.5)
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4 Flow selections for nonlinear Fokker–Planck equations

on (0,∞) for all u0 ∈ L1(Rd). In particular, u ∈ C(R+, L
1(Rd)). One can also

show: u is a weakly continuous solution to (4.1.4) in the sense of Definition 3.1.1;
u > 0 if u0 > 0; |u(t)|L1 = |u0|L1 for all t > 0. By Remark 4.1.6, {u(u0)}u0∈L1 has
the flow property in L1(Rd).

Conclusion: Posing (4.1.4) as a nonlinear evolution equation in L1(Rd), the
Crandall–Liggett semigroup approach yields a family of weakly continuous prob-
ability solutions for every L1 ∩P-valued initial datum, and this family has the flow
property in L1 ∩ P.

Exercise 10.4.: Read the paper [3].

Remark 4.1.7. Note that u(u0) is not necessarily the unique L1-mild solution to
(4.1.4), since we considered a restriction A of A0. So, we only obtain mild unique-
ness for (4.1.5), which is not equivalent to (4.1.4). Under stronger assumptions on
the coefficients, one can prove m-dissipativity of (A0, D(A0)), and in this case, mild
uniqueness for (4.1.4) follows.

4.2 Flow selections

The reference for this section is [15].
We denote by SPs the set of vaguely continuous subprobability measure-valued

solutions µ to the NLFPE such that

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0,∞)× Rd;µtdt),

and SPs,ζ its subset of solutions with initial datum ζ ∈ SP.

Definition 4.2.1. {As,ζ}s>0,ζ∈SP, As,ζ ⊆ SPs,ζ , is flow-admissible, if

(i) (µt)t>s ∈ As,ζ =⇒ (µt)t>r ⊆ Ar,µr , ∀r > s > 0, ζ ∈ SP;

(ii) (µt)t>s ∈ As,ζ and (ηt)t>r ∈ Ar,µr , then µ ◦r η ∈ As,ζ , where

(µ ◦r η)t :=

®
µt, if t 6 r

ηt, if t > r.

For each s > 0, we denote by As ⊆ SP the set of ζ for which As,ζ 6= ∅. We
say (s, ζ) is admissible, if ζ ∈ As.

A family µs,ζ , s > 0, ζ ∈ As is a solution flow to the NLFPE in {As,ζ}, if µs,ζ ∈ As,ζ
and

µs,ζt = µ
r,µs,ζr
t , ∀t > r > s, ζ ∈ As. (4.2.1)

Example 4.2.2. The families As,ζ = SPs,ζ and

As,ζ =

®
SP 1

s,ζ , if ζ ∈ P

∅, if ζ /∈ P
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4 Flow selections for nonlinear Fokker–Planck equations

are both flow-admissible, where SP 1
s,ζ is the subset of SPs,ζ consisting of probability

solutions. For a third example, denote by SP�s,ζ the subset of SPs,ζ of curves
consisting of dx-absolutely continuous subprobability measures for all t > s. Then,
for each SP� ⊆M ⊆ SP the family

As,ζ :=

®
SP�s,ζ , ζ ∈M

∅, ζ /∈M

is flow-admissible. This case appears for Nemytskii-type equations and in cases in
which it is known that for each ζ ∈M solutions from initial datum ζ are function-
valued at each positive time (also called L1-regularization).

We denote by τv the topology of vague convergence on SP. Recall that a topo-
logical space X is Hausdorff, if for any pair of points x, y ∈ X,x 6= y, there exist
disjoint open sets A,B ⊆ X with x ∈ A, y ∈ B. In particular, every metric space is
Hausdorff, but not every Hausdorff space is metrizable.

Theorem 4.2.3. Let (H, τ) be a Hausdorff topological space with H ⊆ SP, τ ⊇
τv, and let {As,ζ}s>0,ζ∈SP be flow-admissible. If each As,ζ is a compact subset
of C([s,∞), H) w.r.t. the topology of pointwise convergence, then there exists a
solution flow to the NLFPE in {As,ζ}.

We abbreviate CsH := C([s,∞), H).

Remark 4.2.4. (i) Note that the topology of pointwise convergence on CsH, de-
noted τpt (suppressing the dependence on H and s in the notation), is a rather
coarse topology. For instance, if H is a metric space, then τpt ⊂ τlu on CsH,
where τlu denotes the topology of locally uniform convergence. Recall that for
ordered topologies τ1 ⊆ τ2 on a set X any τ2-compact subset is also τ1-compact,
Thus, the compactness-criterion in the previous theorem is relatively simple
to check.

(ii) Typical choices for H are H = SP, H = P with τ = τv. Another choice
is to choose As,ζ as a subset of L2-valued L2-weakly continuous curves and
(H, τ) = (L2 ∩ SP, τ2,w), where τ2,w denotes the weak topology on L2. This
space is not metrizable, but Hausdorff.

Regarding the proof of Theorem 4.2.3, we need the following definition. Set
Qs := Q ∩ [s,∞).

Definition 4.2.5. (i) We call any bijective map ξ : N×Q0 → N0 an enumeration.
For such ξ and k ∈ N0, we write (nk, qk) := ξ−1(k).

(ii) For s > 0, denote by (ms
k)k∈N0 the enumerating sequence of N × Qs with

respect to a prescribed enumeration ξ, i.e. there exist exactly k elements
(n, q) in N×Qs with ξ(n, q) < ms

k.

Note that for 0 6 s < r, the sequence (mr
k)l∈N0

is a subsequence of (ms
k)l∈N0

.
Moreover, (CsH, τpt) is Hausdorff, since so is H. A family {fi}i∈I of bounded
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4 Flow selections for nonlinear Fokker–Planck equations

measurable functions fi : Rd → R is called measure-separating, if the equivalence

µ1 6= µ2 ⇐⇒ ∃i ∈ I :

∫
Rd
fi dµ

1 6=
∫
Rd
fi dµ

2

holds for all µ1, µ2 ∈ M+
b . There exists a countable measure-separating family in

Cc(Rd) (Exercise 11.1).

Proof of Theorem 4.2.3. Let H = {hn, n ∈ N} ⊆ Cc(Rd) be measure-separating, ξ
be an enumeration, (s, ζ) ∈ [0,∞)× SP be admissible and consider

Gs,ζ0 : CsH → R, µ = (µt)t>s 7→
∫
Rd
hnms0

dµqms0
,

us,ζ0 := sup
µ∈As,ζ

Gs,ζ0 (µ),

Ms,ζ
0 :=

(
(Gs,ζ0 )−1(us,ζ0 )

)
∩As,ζ .

Since τv ⊆ τ and H ⊆ Cc(Rd), Gs,ζ0 is continuous on CsH. Furthermore, since (s, ζ)

is admissible and As,ζ is nonempty and compact in CsH, Ms,ζ
0 is nonempty and

compact in CsH as well. Define iteratively for k ∈ N0

Gs,ζk+1 : CsH → R, (µt)t>s 7→
∫
Rd
hnms

k+1
dµqms

k+1
,

us,ζk+1 := sup
µ∈Ms,ζ

k

Gs,ζk+1(µ),

Ms,ζ
k+1 :=

(
(Gs,ζk+1)−1(us,ζk+1)

)
∩Ms,ζ

k .

The same assertions as for Gs,ζ0 and Ms,ζ
0 are true for Gs,ζk+1 and Ms,ζ

k+1. Since

Ms,ζ
k+1 ⊆M

s,ζ
k and CsH is Hausdorff, we obtain

Ms,ζ :=
⋂
k>0

Ms,ζ
k 6= ∅

(Exercise 11.2). When µ(i) = (µ
(i)
t )t>s ∈ Ms,ζ for i ∈ {1, 2}, by construction we

have ∫
Rd
hnms

k
dµ(1)

qms
k

=

∫
Rd
hnms

k
dµ(2)

qms
k

, k ∈ N0.

Since {(nmsk , qmsk), k ∈ N0} = N × Qs, this yields
∫
hndµ

(1)
q =

∫
hndµ

(2)
q for all

(n, q) ∈ N × Qs and hence µ
(1)
q = µ

(2)
q for all q ∈ Qs, because H is measure

separating. Since µ(1) and µ(2) are continuous in the Hausdorff space H, µ(1) = µ(2)

follows. Consequently, Ms,ζ ⊆ As,ζ is a singleton, i.e. Ms,ζ = {µs,ζ} for some
µs,ζ ∈ As,ζ .

It remains to show that the family {µs,ζ}s>0,ζ∈As has the flow property. To this
end, let (s, ζ) be admissible and 0 6 s < r < t. Consider the admissible (!) initial
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4 Flow selections for nonlinear Fokker–Planck equations

condition (r, µs,ζr ) and let γ = (γt)t>r be the unique element in Mr,µs,ζr according

to the above selection, i.e. γ = µr,µ
s,ζ
r in our notation. We need to show

γt = µs,ζt , ∀ t > r. (4.2.2)

Set η := µs,ζ ◦r γ ∈ As,ζ . Due to the iterative maximizing selection of the first part
of the proof, we have∫

Rd
hnms0

dµs,ζqms0
>
∫
Rd
hnms0

dηqms0
. (4.2.3)

If qms0 ∈ [s, r), then ηqms0
= µs,ζqms0

by definition and we have equality in (4.2.3). If

qms0 > r, then qms0 = qmr0 and by the characterizing property of γ in Ar,µs,ζr , and

since (µs,ζt )t∈[r,∞) ∈ Ar,µs,ζr , we obtain∫
Rd
hnms0

dµs,ζqms0
6
∫
Rd
hnms0

dγqms0
=

∫
Rd
hnms0

dηqms0
,

and hence we have equality in (4.2.3) in any case. Next, consider ms
1: since (4.2.3)

is an equality, both (µs,ζt )t>s and (ηt)t>s belong to Ms,ζ
0 . Using the characterization

of µs,ζ again, we obtain∫
Rd
hnms1

dµs,ζqms1
>
∫
Rd
hnms1

dηqms1
, (4.2.4)

clearly with equality if qms1 ∈ [s, r). If qms1 > r and qms0 ∈ [s, r), then ms
1 = mr

0, and
hence∫

Rd
hnms1

dµs,ζqms1
6
∫
Rd
hnms1

dγqms1
=

∫
Rd
hnms1

dηqms1
(4.2.5)

by the characterizing property of γ, which gives equality in (4.2.4). If qms0 , qms1 > r,

then ms
0 = mr

0, ms
1 = mr

1 and both µs,ζ and γ are in M
r,µs,ζr
0 , which also gives

(4.2.5). Hence, equality in (4.2.4) holds in any case. By iteration we obtain∫
Rd
hnms

k
dµs,ζqms

k

=

∫
Rd
hnms

k
dηqms

k
, ∀ k ∈ N0,

and hence, since H is measure separating,

µs,ζq = ηq, ∀q ∈ Qs,

thus in particular µs,ζq = ηq = γq for all q ∈ Qr. Since both curves are continuous
with values in H, we obtain (4.2.2), which closes the proof.

Remark 4.2.6. The previous proof works for any countable measure separating family
from Cc(Rd), any enumeration and any dense countable subset of [s,∞) instead of
Qs. The selected flow depends on these choices.
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4 Flow selections for nonlinear Fokker–Planck equations

The iterative selection method from the previous proof allows to also prove the
following characterization.

Proposition 4.2.7. In the situation of the previous theorem, the following are equiv-
alent:

(i) There exists at most one solution flow to the NLFPE with respect to {As,ζ}(s,ζ)∈[0,∞)×SP.

(ii) |As,ζ | 6 1 for all (s, ζ) ∈ R+ × SP.

Proof. Exercise 11.3.

4.2.1 Applications

Recall that a subset A ⊆ X of a topological space X is relatively compact, if its
closure is a compact subset of X. In particular, a closed relatively compact set is
compact. For two topological spaces X,Y , the compact-open topology on C(X,Y )
(the space of continuous maps from X to Y ) is the topology with subbase

{f ∈ C(X,Y ) : f(K) ⊆ O}, K ⊆ X compact, O ⊆ Y open.

For our applications, we will use the following general version of the Arzelá-Ascoli
theorem

Proposition 4.2.8 (Arzelà-Ascoli theorem, Thm.47.1 [13]). Let I be an interval and
(Y, d) a metric space. A subset F ⊆ C(I, Y ) is relatively compact in the compact-
open topology if and only if F is pointwise relatively compact and equicontinuous,
i.e. if

(i) {f(t), f ∈ F} is relatively compact in Y for all t ∈ I

(ii) For all t ∈ I and ε > 0 there is δ > 0 such that

r ∈ I, |t− r| < δ =⇒ sup
f∈F

d(f(t), f(r)) < ε.

Remark 4.2.9. (i) Let Y (with a fixed topology) be metrizable. The topology τlu
on CsY is independent of the choice of compatible metric on Y . This follows
from the fact that for any such metric, τlu coincides with the compact-open
topology on CsY and the straightforward observation that the compact-open
topology on CsY only depends on the topology of Y , not on its metric.

(ii) Whether a subset F ⊆ CsY is equicontinuous generally depends on the choice
of compatible metric on Y . However, the Arzelá-Ascoli theorem asserts an
equivalence between a) relative compactness of F and b.1) pointwise relative
compactness plus b.2) equicontinuity. Since properties a) and b.1) for F are
clearly independent of the choice of compatible metric on Y , it follows that
equicontinuity of a pointwise relatively compact set F is independent of the
choice of compatible metric on Y .

The bottomline of the previous remark for our application is: If As,ζ ⊆ CsH
is pointwise relatively compact and we want to prove relative compactness of As,ζ
w.r.t. τlu via Arzelá-Ascoli’s theorem, we may choose any compatible metric on
(H, τ).
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Linear equations. Consider the usual linear FPE

∂tµt = ∂2
ij

(
aij(t, x)µt

)
− ∂i

(
bi(t, x)µt

)
(4.2.6)

and suppose the coefficients aij , bi : (0,∞) × Rd → R, 1 6 i, j 6 d, are Borel and
satisfy

Assumption A1.

(A1.i)
∫ T

0
supx∈Rd

(
|aij(t, x)|+ |bi(t, x)|

)
dt <∞, ∀T > 0, i, j 6 d.

(A1.ii) x 7→ aij(t, x) and x 7→ bi(t, x) are continuous for dt-a.e. t > 0.

In this case SPs,ζ = SP 1
s,ζ for ζ ∈ P and each curve in SPs,ζ is weakly continuous,

see for instance Exercise 3.2.(ii). Consider

As,ζ :=

®
SPs,ζ , if ζ ∈ P

∅ , if ζ ∈ SP\P,
(4.2.7)

which is flow-admissible by Example 4.2.2.

Proposition 4.2.10. Suppose Assumption A1 holds and that SPs,ζ is nonempty for
each (s, ζ) ∈ [0,∞)×P. Then there is a solution flow for (4.2.6) in {As,ζ}s>0,ζ∈SP.

Proof. Let (H, τ) = (SP, τv). By Theorem 4.2.3 and Remark 4.2.4 (i), it suffices to
prove each As,ζ is a compact subset of CsH w.r.t. τlu, so we prove As,ζ is closed,
pointwise relatively compact and equicontinuous in order to apply Proposition 4.2.8.
Since (SP, τv) is a compact metrizable space (see in particular Remark 1.1.5 (iii)),
pointwise relative compactness follows.

Concerning closedness, since (SP, τv) is metrizable, also (CsSP, τlu) is metrizable,
hence sequential. Thus it suffices to prove that the limit of any τlu-converging

sequence in As,ζ belongs to As,ζ . So, let µ(n) = (µ
(n)
t )t>s, n > 1, be a τlu-converging

sequence in As,ζ with limit µ ∈ CsSP and let ϕ ∈ C2
c (Rd). Due to (A1.ii), we have

La,bϕ(t) ∈ Cc(Rd) dt-a.s., hence∫
Rd
La,bϕ(t) dµ

(n)
t −→

n→∞

∫
Rd
La,bϕ(t) dµt dt-a.s.,

and by (A1.i), Lebesgue’s dominated convergence theorem gives∫ t

s

∫
Rd
La,bϕdµ

(n)
τ dτ −→

n→∞

∫ t

s

∫
Rd
La,bϕdµτd ∀t > s.

Therefore, µ ∈ As,ζ .
Regarding equicontinuity, thanks to Remark 4.2.9, we may consider the following

convenient τv-compatible metric (Exercise 12.1.) on SP:

dv(ζ1, ζ2) :=
∑
l>1

2−lC−1
l

ï∣∣∣∣ ∫
Rd
fldζ1 −

∫
Rd
fldζ2

∣∣∣∣ ∧ 1

ò
, ζ1, ζ2 ∈ SP,
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where {fl, l ∈ N} =: F ⊆ C2
c (Rd) is arbitrary but fixed and consists of nontrivial

elements such that the closure of F with respect to uniform convergence contains
Cc(Rd). We choose

Cl := 1 +Dl, Dl := (d2 + d) max
16i,j6d

{||∂ifl||∞, ||∂ijfl||∞}.

We obtain for each µ ∈ As,ζ and arbitrary s 6 t1 6 t2:

dv(µt1 , µt2) 6
∑
l>1

2−lC−1
l

ï∫ t2

t1

∫
Rd
|La,bfl(t)|dµtdt ∧ 1

ò
6
∑
l>1

2−l
ï ∫ t2

t1

max
16i,j6d

sup
x∈Rd

(
|aij(t, x)|+ |bi(t, x)|

)
dt

ò
. (4.2.8)

By (A1.i), for any ε > 0, there is δ > 0 independent of µ such that

t1, t2 > s, |t1 − t2| 6 δ =⇒ dv(µt1 , µt2) 6 ε.

Consequently As,ζ is equicontinuous (even uniformly), which completes the proof.

With the same proof, one can prove the existence of a solution flow with respect
to As,ζ = SPs,ζ for all ζ ∈ SP (under the assumption that each of these sets is
non-empty). The advantage of the choice (4.2.7) is that the corresponding flow
consists of probability solutions.

Remark 4.2.11. Estimate (4.2.8) is independent of the initial measure ζ, so we
obtain even relative compactness of ∪ζ∈PAs,ζ .

Nonlinear equations. Consider B((0,∞))⊗τv⊗B(Rd)-measurable coefficients aij , bi :
(0,∞)× SP× Rd → R, satisfying

Assumption A2.

(A2.i) (t, ζ, x) 7→ aij(t, ζ, x) and (t, ζ, x) 7→ bi(t, ζ, x) are bounded on (0, T )×SP×Rd
for all T > 0.

(A2.ii) x 7→ aij(t, ζ, x) and x 7→ bi(t, ζ, x) are continuous for each ζ ∈ SP and dt-a.e.
t > 0.

(A2.iii) If ζn −→ ζ vaguely in SP, then aij(t, ζn, x) −→ aij(t, ζ, x) and bi(t, ζn, x) −→
bi(t, ζ, x) locally uniformly in x ∈ Rd for each t > 0.

Note that (A2.iii) excludes the case of Nemytskii-coefficients.
Let As,ζ be as in (4.2.7). As in the linear case, under Assumption A2 we have

SPs,ζ = SP 1
s,ζ for all ζ ∈ P.

Proposition 4.2.12. Suppose Assumption A2 is fulfilled and SPs,ζ is nonempty for
each (s, ζ) ∈ [0,∞) × P. Then there exists a solution flow for the NLFPE in
{As,ζ}s>0,ζ∈SP.
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Proof. Set (H, τ) = (SP, τv). As in the linear case, we use the Arzelá-Ascoli theorem
4.2.8 and Theorem 4.2.3, and we prove compactness of As,ζ ⊆ CsH even with
respect to τlu. Again, pointwise relative compactness follows from the compactness
of (SP, τv). Equicontinuity of As,ζ can be prove exactly as in the linear case, using

(A2.i) instead of (A1.i). For closedness, assume a sequence µ(n) = (µ
(n)
t )t>s from

As,ζ τlu-converges to µ = (µt)t>s in CsSP. We need to prove∫ t

s

∫
Rd
L
a,b,µ

(n)
r
ϕdµ(n)

r dr −→
n→∞

∫ t

s

∫
Rd
La,b,µrϕdµrdr (4.2.9)

for each ϕ ∈ C2
c (Rd) and t > s. This follows since∫

Rd
L
a,b,µ

(n)
t
ϕ(t) dµ

(n)
t = C∗0

〈
µ

(n)
t , L

a,b,µ
(n)
t
ϕ(t)

〉
C0
,

where C∗0
〈
µ, f

〉
C0

denotes the dual pairing between f ∈ (C0(Rd), || · ||∞) and a finite

Borel measure µ, understood as an element in the dual space of C0(Rd). Since τv
coincides with the weak-∗ topology on the topological dual of C0(Rd), and since
assumptions (A2.ii) and (A2.iii) yield L

a,b,µ
(n)
t
ϕ(t) −→ La,b,µtϕ(t) in (C0(Rd), ||·||∞)

for each t > s, we get

C∗0

〈
µ

(n)
t , L

a,b,µ
(n)
t
ϕ(t)

〉
C0
−→ C∗0

〈
µt, La,b,µtϕ(t)

〉
C0
.

Now (4.2.9) follows by (A2.i) and Lebesgue’s dominated convergence theorem.

Nemytskii-type coefficients. Under suitable assumptions on the coefficients, The-
orem 4.2.3 applies also in the Nemytskii-case. For an example, please see Section
4.2.2. in [15] (Reading exercise 12.2.).
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5 Nonlinear Markov processes

As said at the end of Chapter 3, the family of solution laws to a well-posed DDSDE
does not satisfy the Markov property. Now we present a generalized definition of
Markov processes, tailored to apply to such (and, in fact, much more general) cases.
Thereby, we complete the nonlinear analog of the relations between linear FPEs,
SDES and Markov processes. The main reference for the content of this chapter is
[16].

As before, we write Ωs := C([s,∞),Rd) (endowed with the topology of locally uni-
form convergence), πst , t > s, for the usual projections on Ωs, and Fs,r := σ(πsτ , s 6
τ 6 r). We also denote by Πs

r : Ωs → Ωr the path projections Πs
r : w 7→ w|[r,∞) for

s 6 r.

5.1 Definition, basic properties, relation to classical

Markov processes

Definition 5.1.1. Let P0 ⊆ P. A nonlinear Markov process is a family (Ps,ζ)(s,ζ)∈R+×P0

of probability measures Ps,ζ on B(Ωs) such that

(i) µs,ζt := Ps,ζ ◦ (πst )
−1 ∈ P0 for all 0 6 s 6 t and ζ ∈ P0.

(ii) The nonlinear Markov property holds, i.e. for all 0 6 s 6 r 6 t, ζ ∈ P0,
A ∈ B(Rd)

Ps,ζ(πst ∈ A|Fs,r)(·) = p(s,ζ),(r,πsr(·))(π
r
t ∈ A) Ps,ζ − a.s., (5.1.1)

where p(s,ζ),(r,y), y ∈ Rd, is the disintegration-family of Pr,µs,ζr w.r.t. πrr (i.e.

in particular p(s,ζ),(r,y) ∈ P(Ωr) and p(s,ζ),(r,y)(π
r
r = y) = 1).

Note that Ωs × B(Ωr) 3 (ω,C) 7→ p(s,ζ),(r,πsr(ω))(C) is equal to the regular con-
ditional probability of Ps,ζ w.r.t. πsr , restricted to σ(πsu, u > r) (by identifying the
latter σ-algebra with B(Ωr)) (Exercise 12.3.)

The term nonlinear Markov property stems from the fact that in usual applica-
tions the family {µs,ζt }06s6t,ζ∈P0

is a family of solutions to a nonlinear FPE.

Proposition 5.1.2. The one-dimensional time marginals µs,ζt = Ps,ζ ◦ (πst )
−1 of a

nonlinear Markov process satisfy the flow property.

Proof. We have for all A ∈ B(Rd):

µs,ζt (A) = Es,ζ
[
Ps,ζ(πst ∈ A|Fs,r)

]
= Es,ζ

[
p(s,ζ),(r,πsr)(π

r
t ∈ A)

]
= Pr,µs,ζr

(
πrt ∈ A

)
= µ

r,µs,ζr
t (A).
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5 Nonlinear Markov processes

Remark 5.1.3. In contrast to the case of classical Markov processes, it is in general
not true that the marginals µs,ζt satisfy the (time-inhomogeneous version of the)
Chapman–Kolmogorov equations (2.1.3).

The following proposition shows that the finite-dimensional distributions of the
path measures of a nonlinear Markov process (and hence the path measures them-
selves) are uniquely determined by the family of one-dimensional time marginals

ps,ζr,t (x, dz), s 6 r, x ∈ Rd, defined in (5.1.2) below.

Proposition 5.1.4. Let (Ps,ζ)(s,ζ)∈R+×P0
be a nonlinear Markov process. For ζ ∈

P0, 0 6 s 6 r 6 t and x ∈ Rd, define ps,ζr,t (x, dz) ∈ P by

ps,ζr,t (x, dz) := p(s,ζ),(r,x) ◦ (πrt )
−1(dz), (5.1.2)

which is uniquely determined for µs,ζr -a.e. x ∈ Rd. Then for n ∈ N0, f ∈
Bb((Rd)n+1) and s 6 t0 < · · · < tn:

Es,ζ [f(πst0 , . . . , π
s
tn)]

=

∫
Rd

Å
· · ·
∫
Rd

Å∫
Rd
f(x0, . . . , xn) ps,ζtn−1,tn(xn−1, dxn)

ã
ps,ζtn−2,tn−1

(xn−2, dxn−1) . . .

ã
µs,ζt0 (dx0).

Proof. Exercise 12.4.

Remark 5.1.5. Even in the case P0 = P it is usually not true that ps,ζr,t (x, ·) =
Pr,δx ◦ (πrt )

−1.

The following result shows that the class of nonlinear Markov processes contains
the class of classical normal Markov processes. Let (Ps,x)s>0,x∈Rd be a classical
normal time-inhomogeneous Markov process and set Ps,ζ :=

∫
Rd Ps,xdζ(x), ζ ∈ P.

Proposition 5.1.6. (Ps,ζ)(s,ζ)∈R+×P is a nonlinear Markov process with P0 = P.

Proof. We have Pr,µs,ζr =
∫
Rd Pr,y µ

s,ζ
r (dy), y 7→ Pr,y(A) is measurable for every

A ∈ Ωr and, by normality, Pr,y is concentrated on {πrr = y}. Hence Pr,y, y ∈
Rd, is the disintegration family of Pr,µs,ζr w.r.t. πrr , and thus (5.1.1) holds with
p(s,ζ),(r,πsr(·)) = Pr,πsr(·), which is the classical Markov property.

Remark 5.1.7. If {Ps,ζ}(s,ζ)∈R+×P0
is a nonlinear Markov process, consisting of

solution laws to a DDSDE, its one-dimensional time marginal curves (µs,ζt )t>s,

µs,ζt := Ps,ζ ◦ (πst )
−1, solve the associated NLFPE, and the curves (ps,ζr,t (x, dz))t>r

from (5.1.2) are weakly continuous probability solutions to (µs,ζ-`FPE) with initial
datum (r, δx) for µs,ζr -a.e. x. The latter follows from Lemma 1.3.2 (i) and Corollary
1.3.5.

Hence, if for all (s, ζ) ∈ R+ × P0 equation (µs,ζ-`FPE) has a unique weakly

continuous probability solution for every initial datum (r, x) ∈ R+ × Rd, then ps,ζr,t ,
s 6 r 6 t, are the transition kernels of a linear time-inhomogeneous Markov process
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5 Nonlinear Markov processes

{P s,ζr,x }(r,x)∈[s,∞)×Rd , see Theorem 2.2.2. The family of these processes is related to
the nonlinear Markov process by

Pr,µs,ζr =

∫
Rd
P s,ζr,x dµ

s,ζ
r (x), ∀0 6 s 6 r, ζ ∈ P0

(i.e. the RHS is the convex mixture of the path laws of the linear Markov processes).
In this case, Proposition 5.1.4 shows that the finite-dimensional marginals of Ps,ζ
(and hence its path law) are uniquely determined by the transition kernels of a linear
Markov process, which depends, however, on (s, ζ).

,

5.2 Construction of nonlinear Markov processes

As before, we refer to (3.1.1) and the related stochastic equation (3.3.1) simply as
”the NLFPE” and ”the DDSDE”. We stress that here we do not impose any regu-
larity on the coefficients, i.e. in particular Nemytskii-type coefficients are included
in the theory presented below.

We introduce the following notation [not to be confused with the notation Ms,ζ

in the proof of Theorem 4.2.3 ]. For (s, ζ) ∈ R+×P, we denote the space of weakly
continuous probability solutions µ to the NLFPE from (s, ζ) satisfying

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1([0, T ]× Rd;µtdt), ∀T > 0

by Ms,ζ . For a weakly continuous curve η : [s,∞) ∈ t 7→ ηt ∈ P, we write Ms,ζ
η

for the set of all weakly continuous probability solutions µ to (η-`FPE) from (s, ζ)
satisfying for all i, j 6 d

[(t, x) 7→ aij(t, ηt, x)], [(t, x) 7→ bi(t, ηt, x)] ∈ L1([0, T ]× Rd;µtdt), ∀T > 0.

Recall that µ is an extreme point of the convex set Ms,ζ
η , if µ ∈ Ms,ζ

η and µ =

αµ1 + (1 − α)µ2 for α ∈ (0, 1) and µ1, µ2 ∈ Ms,ζ
η implies µ1 = µ2. The set of

extreme points of Ms,ζ
η is denoted by Ms,ζ

η,ex.

Theorem 5.2.1 (Rehmeier-Röckner-nonlinear-Markov-construction). Let P0 ⊆ P

and {µs,ζ}(s,ζ)∈R+×P0
be a solution flow to the NLFPE such that µs,ζ ∈ Ms,ζ

µs,ζ ,ex

for each (s, ζ) ∈ R+ × P0.

(i) For every (s, ζ) ∈ R+ × P0, there is a unique weak solution Xs,ζ to the
DDSDE with initial condition (s, ζ) and one-dimensional time marginals equal

to (µs,ζt )t>s.

(ii) {Ps,ζ}s>0,ζ∈P0 , Ps,ζ := LXs,ζ , is a nonlinear Markov process. In particular,

its one-dimensional time marginals are µs,ζt , 0 6 s 6 t, ζ ∈ P0.

It should be noted that for a solution flow {µs,ζ}(s,ζ)∈R+×P0
it holds µs,ζt ∈ P0

for all 0 6 s 6 t, ζ ∈ P0.
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5 Nonlinear Markov processes

Remark 5.2.2. (i) Assertion (i) does not mean that there is a unique solution
which additionally satisfies the stated marginal-property, but that the subclass
of solutions with this marginal property contains exactly one element.

(ii) Note that the theorem does not require any uniqueness for the NLFPE. Of
course, if the NLFPE is well-posed in P0, its unique solution family has the
flow property, but in the absence of uniqueness, a flow may still be obtained
by the methods presented in the previous chapter.

For the proof, we need the following auxiliary result, which, in view of applica-
tions, provides a more checkable characterization of the extremality condition of the
previous theorem. For a P-valued curve µ = (µt)t>s and C > 0 set

As,6(µ,C) :=
{

(ηt)t>s ∈ C([s,∞),P) : ηt 6 Cµt, ∀t > s
}
, As,6(µ) :=

⋃
C>0

As,6(µ,C),

where continuity is meant w.r.t. the topology of weak convergence of measures.

Lemma 5.2.3. Let (s, ζ) ∈ R+ × P, η ∈ C([s,∞),P) and µ = (µt)t>s ∈Ms,ζ
η . Then

|(Ms,ζ
η ∩As,6(µ))| = 1 ⇐⇒ µ ∈Ms,ζ

η,ex.

By considering coefficients which do not depend on their measure variable, it is
clear that the previous lemma holds in the case of a linear FPE as well.

Proof. Clearly, µ ∈ Ms,ζ
η ∩ As,6(µ). First, suppose µ /∈ Ms,ζ

η,ex, i.e. there are

µi, i ∈ {1, 2}, in Ms,ζ
η and α ∈ (0, 1) such that

µt = αµ1
t + (1− α)µ2

t , t > s, (5.2.1)

and µ1 6= µ2. Then (5.2.1) implies µi ∈ Ms,ζ
η ∩ As,6(µ), i ∈ {1, 2}, and hence

|(Ms,ζ ∩As,6(µ))| > 2.
Now assume µ ∈ Ms,ζ

η,ex and let ν ∈ Ms,ζ
η ∩ As,6(µ). Then for every t > s there

is %t : Rd → R+, B(Rd)-measurable, such that νt = %t µt, and %t 6 C for all t > s
for some C ∈ (1,∞). Furthermore, for t > s,

µt =
1

C
%t µt + (1− 1

C
%t)µt =

1

C
νt + (1− 1

C
)λt,

where λt :=
1− 1

C %t
1− 1

C

µt. Clearly the measure λt is nonnegative and satisfies λt(Rd) =

1, and thus (λt)t>s ∈Ms,ζ
η . Since µs,ζ ∈Ms,ζ

η,ex, it follows µt = νt.

As a further preparation, we need part (ii) of the following lemma. Part (i) is not
used here, but is of independent interest. If two nonnegative Borel measures ζ1, ζ2
satisfy ζ1 � ζ2 and ζ2 � ζ1, we write ζ1 ∼ ζ2.

Note: In the following lemma, by ”solution” we mean weakly continuous probability
solutions satisfying (1.3.2).

Lemma 5.2.4. Consider a linear FPKE with initial datum (s0, ζ0) ∈ R+ × P. Then
the following holds.
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5 Nonlinear Markov processes

(i) If solutions are unique from (s0, ζ0), then solutions are also unique from any
(s0, η) such that η ∈ P, η ∼ ζ0.

(ii) If (νs0,ζ0t )t>s is the unique solution in As0,6(νs0,ζ0) from (s0, ζ0), then in
this class solutions are also unique from any (s0, g ζ0) with g ∈ B+

b (Rd),∫
Rd g(x) ζ0(dx) = 1, and δ 6 g for some δ > 0.

The proof can be found as the proof of Lemma 3.7. in [16].

Proof of Theorem 5.2.1.

We shall need the following auxiliary result, which is taken from [19], see Proposition
2.6. therein.

Lemma 5.2.5. Let 0 6 s 6 r, P ∈ P(Ωs) a solution to a linear martingale problem
with initial time s, and % : Ωs → R+ a bounded Fs,r-measurable probability density
(w.r.t. P ). Then (%P ) ◦ (Πs

r)
−1 solves the same martingale problem with initial

time r.

We can now prove Theorem 5.2.1.

Proof of Theorem 5.2.1. (i) The existence of a weak solution Xs,ζ to the DDSDE
for each initial datum (s, ζ) follows from Theorem 3.4.1. Concerning unique-
ness, note that by assumption and Lemma 5.2.3, for each 0 6 s 6 r, ζ ∈ P0,
(µs,ζ-`FPE) has a unique solution from (r, µs,ζr ) in Ar,6(µs,ζ) (this solution is

(µs,ζt )t>r).

Claim: For any (s, ζ) ∈ R+ × P0 and r > s, solutions to the corresponding
linear martingale problem with one-dimensional time marginals in Ar,6(µs,ζ)
are unique from (r, µs,ζr ).

Proof of Claim: Fix (s, ζ) ∈ R+×P0, r > s, and let P 1, P 2 be such solutions.
Their one-dimensional time marginal curves (P it )t>r,

P it := P i ◦ (πrt )
−1,

solve (µs,ζ-`FPE) from (r, µs,ζr ), and hence

P it = µs,ζt , ∀ t > r, i ∈ {1, 2}. (5.2.2)

For n ∈ N, let

H(n)
r := {Πn

i=1hi(π
r
ti) |hi ∈ B+

b (Rd), hi > ci for some ci > 0, r 6 t1 < · · · < tn},

Hr :=
⋃
n∈N

H(n)
r

and note that Hr is closed under pointwise multiplication and σ(Hr) = B(Ωr).
Hence, by induction in n ∈ N and a monotone class argument, it suffices to
prove

EP 1 [H] = EP 2 [H] for all H ∈ H(n)
r (5.2.3)

58



5 Nonlinear Markov processes

for each n ∈ N. For n = 1, (5.2.3) holds by (5.2.2). For the induction step from
n to n + 1, fix r 6 t1 < · · · < tn < tn+1 and functions hi, i ∈ {1, . . . , n + 1},
as specified in the definition of H

(n+1)
r , and set

% : Ωr → R+, % :=
Πn
i=1hi(π

r
ti)

EP 1 [Πn
i=1hi(π

r
ti)]

,

where the denominator is greater or equal to Πn
i=1ci > 0. Note that % is

Fr,tn-measurable and

1

c
6 % 6 c pointwise for some c > 1, (5.2.4)

(where c depends on hi, ti and n) and EP i [%] = 1 for i ∈ {1, 2} by the
induction hypothesis. Since for every f ∈ B+

b (Rd) we have∫
Ωr

f(πrtn) (%P i) =

ï ∫
Ωr

Πn
i=1hi(π

r
ti)f(πrtn)P i

ò(
EP 1 [Πn

i=1hi(π
r
ti)]
)−1

,

and since the induction hypothesis implies that these terms are equal for
i ∈ {1, 2}, it follows that

(%P 1) ◦ (πrtn)−1 = (%P 2) ◦ (πrtn)−1. (5.2.5)

By Lemma 5.2.5, the path measures (%P i) ◦ (Πr
tn)−1, i ∈ {1, 2}, on B(Ωtn)

solve the same linear martingale problem from time tn and, by (5.2.5), with
identical initial condition. Consequently, their curves of one-dimensional time
marginals ηi = (ηit)t>tn := ((%P i)◦ (πrt )

−1)t>tn , i ∈ {1, 2}, solve (µs,ζ-`FPE).
For any A ∈ B(Rd) and t > tn, we have by (5.2.2)

ηit(A) =

∫
Ωr

%(w)1A(πrt (w))P i(dw) 6 c P it (A) = c µs,ζt (A), i ∈ {1, 2},

for c as in (5.2.4), and consequently ηi ∈ Atn,6(µs,ζ). Similarly, ηit(A) >
1
cµ

s,ζ
t (A) for all A ∈ B(Rd) and t > tn. In particular, for t = tn, it follows

that ηitn = gi µs,ζtn for some measurable gi : Rd → R+ such that 1
c 6 gi 6 c,

and
∫
Rd g

i dµs,ζtn = 1. By assumption, Lemma 5.2.3 and 5.2.4 (ii), we obtain
(η1
t )t>tn = (η2

t )t>tn , so in particular η1
tn+1

= η2
tn+1

. Now we have

EP i
[
Πn+1
i=1 hi(π

r
ti)
]

EP 1

[
Πn
i=1hi(π

r
ti)
] =

∫
Ωr

%(w)hn+1(πrtn+1
(w))P i(dw) =

∫
Rd
hn+1(x) ηitn+1

(dx)

for i ∈ {1, 2}, and conclude

EP 1

[
Πn+1
i=1 hi(π

r
ti)
]

= EP 2

[
Πn+1
i=1 hi(π

r
ti)
]
,

which gives (5.2.3) for n+ 1, and hence completes the proof of the claim.

Since µs,ζ ∈ A6,s(µ
s,ζ), the assertion now follows form the equivalence of the

linear martingale problem and the associated SDE.
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(ii) The family (Ps,ζ)(s,ζ)∈R+×P0
satisfies

(i) Ps,ζ ∈ P(Ωs) and Ps,ζ ◦ (πst )
−1 = µs,ζt for all t > s,

(ii) Ps,ζ is the path law of the unique weak DDSDE solution with one-

dimensional time marginals (µs,ζt )t>s.

To prove the nonlinear Markov property, let 0 6 s 6 r 6 t and ζ ∈ P0.
Disintegrating Pr,µs,ζr with respect to πrr yields

Pr,µs,ζr (·) =

∫
Rd
p(s,ζ),(r,y)(·)µs,ζr (dy) (5.2.6)

as measures on B(Ωr), where the µs,ζr -almost surely determined family p(s,ζ),(r,y),

y ∈ Rd, of Borel probability measures on Ωr is as in Definition 5.1.1.

By Lemma 1.3.2, for µs,ζr -a.e. y ∈ Rd, p(s,ζ),(r,y) solves the µs,ζ-linearized

martingale problem from (r, δy). Hence, for any % ∈ B+
b (Rd) with

∫
Rd % dµ

s,ζ
r =

1, the measure P% ∈ P(Ωr),

P% :=

∫
Rd
p(s,ζ),(r,y) %(y) dµs,ζr (dy), (5.2.7)

solves the same linearized martingale problem with initial datum (r, % µs,ζr ).
Let n ∈ N, s 6 t1 < · · · < tn 6 r, h ∈ B+

b ((Rd)n) such that a−1 6 h 6 a
for some a > 1, and let g̃ : Rd → R+ be the bounded, µs,ζr -a.s. uniquely
determined map such that

Es,ζ
[
h(πst1 , . . . , π

s
tn)|σ(πsr)

]
= g̃(πsr) Ps,ζ − a.s.

Let g := c0g̃, where c0 > 0 is such that
∫
Rd g dµ

s,ζ
r = 1, and let Pg be as in

(5.2.7), with g replacing %, with initial condition (r, g µs,ζr ). Also, consider
θ : Ωs → R, θ := c0h(πst1 , . . . , π

s
tn), i.e. Es,ζ [θ] = 1. Set

Pθ := (θ Ps,ζ) ◦ (Πs
r)
−1.

Note that g(Rd), θ(Ωs) ⊆ [a−1c0, ac0] µs,ζr -a.s., so in particular g µs,ζr ∼ µs,ζr .
By Lemma 5.2.5 , also Pθ solves the same linearized martingale problem with
initial datum (r, gµs,ζr ), since for all A ∈ B(Rd)

Pθ ◦ (πrr)
−1(A) =

∫
Ωs

1A(πsr(w))θ(w)Ps,ζ(dw)

=

∫
Ωs

1A(πsr(w))g(πsr(w))Ps,ζ(dw) =

∫
A

g(y)µs,ζr (dy).

In particular, both one-dimensional time marginal curves (Pg ◦(πrt )−1)t>r and
(Pθ ◦ (πrt )

−1)t>r solve (µs,ζ-`FPE) from (r, g µs,ζr ). Moreover,

Pθ ◦ (πrt )
−1, Pg ◦ (πrt )

−1 6 ac0 µ
s,ζ
t , ∀t > r, (5.2.8)
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i.e. both these one-dimensional time marginal curves belong to Ar,6(µs,ζ).
Indeed, (5.2.8) can be seen as follows. For all t > r and A ∈ B(Rd),

Pθ ◦ (πrt )
−1(A) =

∫
Ωs

θ(w)1A(πst (w))Ps,ζ(dw)

6 c0a

∫
Ωs

1A(πst (w))Ps,ζ(dw) = c0aµ
s,ζ
t (A).

Similarly, by (5.2.6),

Pg ◦ (πrt )
−1(A) =

∫
Rd
p(s,ζ),(r,y)(π

r
t ∈ A)g(y)µs,ζr (dy) 6 ac0 Pr,µs,ζr (πrt ∈ A) = ac0 µ

s,ζ
t (A).

Hence by the assumption, Lemma 5.2.3 and Lemma 5.2.4 (ii)

Pg ◦ (πrt )
−1 = Pθ ◦ (πrt )

−1, ∀t > r,

and therefore for t > r and A ∈ B(Rd)

Es,ζ
[
h(πst1 , . . . , π

s
tn)1πst∈A

]
= c−1

0 Pθ ◦ (πrt )
−1(A) = c−1

0 Pg ◦ (πrt )
−1(A)

= c−1
0

∫
Ωs

p(s,ζ),(r,πsr(ω))(π
r
t ∈ A)g(πsr(ω))Ps,ζ(dω)

=

∫
Ωs

p(s,ζ),(r,πsr(ω))(π
r
t ∈ A)h(πst1(ω), . . . , πstn(ω))Ps,ζ(dω).

Here we used the σ(πsr)-measurability of Ωs 3 ω 7→ p(s,ζ),(r,πsr(ω))(π
r
t ∈ A) for

the final equality. By a monotone class-argument, (5.1.1) follows.

Since the nonlinear Markov property is always fulfilled for s = r (!), the following
corollary follows from the previous proof.

Corollary 5.2.6. Let P0 ⊆ P0 ⊆ P and let {µs,ζ}(s,ζ)∈R+×P0
be a solution flow to the

NLFPE such that µs,ζt ∈ P0 for all 0 6 s 6 t, ζ ∈ P0 (then {µs,ζ}(s,ζ)∈R+×P0
is a

solution flow) and µs,ζt ∈ P0 for all 0 6 s < t, ζ ∈ P0. Also assume µs,ζ ∈Ms,ζ
µs,ζ ,ex

for all (s, ζ) ∈ R+ ×P0.
Then there exists a nonlinear Markov process (Ps,ζ)(s,ζ)∈R+×P0

such that Ps,ζ ◦
(πst )

−1 = µs,ζt for every (s, ζ) ∈ R+ × P0 and t > s, consisting of path laws of weak
solutions to the corresponding DDSDE. Moreover, for ζ ∈ P0, Ps,ζ is the path law
of the unique weak solution to the DDSDE with one-dimensional time marginals
(µs,ζt )t>s.

A typical application of Corollary 5.2.6 is as follows: P0 = P ∩ L∞, P0 = P, one
has a solution flow {µs,ζ}(s,ζ)∈R+×P to the NLFPE with µs,ζ ∈

⋂
δ>s L

∞((δ,∞), L∞)
(also called L1 − L∞-regularization), and for every initial datum (s, ζ) ∈ R+ ×P0,
solutions to the NLFPE are unique in

⋂
T>s L

∞((s, T )×Rd). From the latter prop-

erty, one can often prove that the corresponding linearized equations (µs,ζ-`FPE)
have a unique solution in

⋂
T>s L

∞((s, T ) × Rd) from (s, ζ) ∈ R+ ×P0. Then the
extremality-assumption of the corollary is satisfied.
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5.3 Applications to nonlinear FPEs and PDEs

Finally, we present some general and explicit cases of NLFPEs to which Theorem
5.2.1 or Corollary 5.2.6 apply.

(i) Well-posed equations. If the NLFPE has a unique weakly continuous proba-
bility solution µs,ζ with the previously mentioned global in space integrability
condition from every initial datum (s, ζ) ∈ R+ ×P, and each linearized equa-
tion (µs,ζ-`FPE) has a unique weakly continuous probability solution from
(s, ζ), Theorem 5.2.1 applies and yields the existence of a uniquely deter-

mined nonlinear Markov process with one-dimensional time marginals µs,ζt ,
0 6 s 6 t, ζ ∈ P.

We stress again that these strong well-posedness results can typically not be
proven for equations with Nemytskii-type coefficients.

(ii) Generalized PME. Consider

∂tu(t) = ∆β(u)− div
(
DB(u(t))u(t)

)
(5.3.1)

under the following assumptions.

(B1) β(0) = 0, β ∈ C2(R), β′ > 0.

(B2) B ∈ C1(R) ∩ Cb(R), B > 0.

(B3) D ∈ L∞(Rd;Rd),divD ∈ L2
loc(Rd), (divD)− ∈ L∞(Rd).

(B4) ∀K ⊂ R compact: ∃αK > 0 with |B(r)r − B(s)s| 6 αK |β(r) − β(s)|
∀r, s ∈ K.

For the class of distributional solutions (in PDE-sense), this equation can be
equivalently considered as a NLFPE, see Example (ii) in Section 3.1. The
following holds: For each (s, ζ) ∈ R+ × P0, P0 := P ∩ L∞, there is a dis-

tributional solution us,ζ to (5.3.1) such that µs,ζt = us,ζt (x)dx is a weakly
continuous probability solution in

⋂
T>s L

∞((s, T )×Rd), and these solutions

have the flow property in P0. Moreover, µs,ζ is the only weakly continuous
probability solution from (s, ζ) to (µs,ζ-`FPE) in

⋂
T>s L

∞((s, T )×Rd). For
these statements, see [3, Thm.2.2] and [6, Cor.4.2], respectively.

Thus, Theorem 5.2.1 applies and gives a nonlinear Markov process {Ps,ζ}s>0,ζ∈P0

with one-dimensional time marginals densities us,ζt , and Ps,ζ is the path law
of a restricted-unique weak solution to the associated DDSDE

dXt = B
(
ut(Xt)

)
D(Xt))dt+

 
2β(ut(Xt))

ut(Xt)
dBt, LXt(dx) = ut dx, t > s.

Bottomline: The nonlinear PDE-solutions us,ζ have a probabilistic represen-
tation as the one-dimensional time marginal densities of a nonlinear Markov
process, which consists of solutions to the associated DDSDE.
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(iii) Classical PME, measure-valued initial data. For the classical porous media
equation

∂tu = ∆
(
|u|m−1u

)
, m > 1,

it was shown in [14] that for any initial datum (s, ζ) ∈ R+×P, there is a unique
weakly continuous distributional (in PDE-sense) probability solution us,ζ in⋂
T>τ>s L

∞((τ, T )×Rd). In fact, it is shown that us,ζ is even L1-continuous
on (s,∞). Clearly, the uniqueness implies the flow property for the solutions

t 7→ us,ζt (x)dx to the corresponding NLFPE, see Example (i) in Section 3.1.
For ζ = δx0 , us,ζ is the fundamental solution, known as Barenblatt solution,

u
s,δx0
t (x) = (t− s)−α

ï(
C − k|x− x0|2(t− s)−2β

)+ò 1
m−1

, t > s,

where α = d
d(m−1)+2 , β = α

d , k = α(m−1)
2md , f+ := max(f, 0), and C = C(m, d) >

0 is chosen such that
∫
Rd u

s,ζ
t (x)dx = 1 for all t > s. The corresponding

McKean-Vlasov equation is

dXt =
»

2ut(Xt)m−1dBt, LXt = ut(x)dx, t > s, LXs = ζ. (5.3.2)

Since assumptions (B1)-(B4) are satisfied, for ζ ∈ P∩L∞ we have uniqueness
of (µs,ζ-`FPE) from (s, ζ) in

⋂
T>s L

∞((s, T ) × Rd) (compare (ii) above).
Thus, Corollary 5.2.6 applies with P0 = P ∩ L∞ and P0 = P, and yields a
nonlinear Markov process (Ps,ζ)(s,ζ)∈R+×P consisting of path laws Ps,ζ of weak

solutions to (5.3.2) with one-dimensional time marginals densities us,ζt .

This way, the famous Barenblatt solutions have a probabilistic interpretation
as time marginal densities of a nonlinear Markov process.

Remark 5.3.1. Corollary 5.2.6 first only implies that Ps,ζ is uniquely deter-
mined if ζ ∈ P ∩ L∞. However, it can be shown from the formula for the
finite-dimensional marginals in Proposition 5.1.4 that the entire nonlinear
Markov process {Ps,ζ}s>0,ζ∈P is uniquely determined by {us,ζ}s>0,ζ∈P.

For further applications, including the 1D-Burgers equation and the 2D Navier–
Stokes equations in vorticity form, please see [16].
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