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.
Motivation: Heat equation and Brownian motion

Fundamental link of PDE-theory and stochastic analysis: connection
between heat equation

1
deu(t,y) =5 Au(t,y), (t,y) € (0,0) xR? (HE)
and d-dim. Brownian motion B = (B;)t>0: 1D-time marginal curve of B
tud:=2(B), t>0,

is the fundamental solution to (HE) with initial datum &g, i.e. the heat
kernel

g (=P
p(t,y,0) = (2mt) 2 exp o ) t>0,

precisely:

u = p(t,y,0)dy, t>0, pd %G,
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Motivation: Heat equation and Brownian motion

Similarly, for x € RY marginal curve (1):>0 of Brownian motion from x
B* = (B{)t=0 := (Bt + x)t=o0,
is the fundamental solution to (HE) with initial datum dy, i.e.
ps = p(t,y,x)dy := p(t,x—y,0)dy, t>0.
Of course, B* solves the SDE
dX¢ =dB:, Xo=x, (SDE)

and the family of path laws (W), cpa, W, :=_Z(B), is a Markov process:
For Ac #(RY) and 7; : C(R4,R?) — RY, 7, (w) := w(t), Markov property

Wi(Teys € AlFs) () = Wy (1 € A), Wi —as,
holds, with transition kernels (x,A) — us(A), t > 0.

Conclusion: Fundamental solutions of (HE) are time marginal densities of
a uniquely determined Markov process, consisting of solutions to (SDE).
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.
The Leibenson equation

Instead of (HE), now consider the Leibenson equation
deu(t,y) = Dp(u’(t,y)), g>0,p>1, (ty)€(0,) xR, (L)

where A, : f > div (|VF|P~2Vf) p-Laplace operator. Note:
e g=1: p-Laplace equation
e p=2: Apr=A, Porous Media equation
e (p,q) =(2,1): Heat equation (linear).

3 explicit Barenblatt solutions, for q(p—1) > 1:

_d 1 2 17 d
w¥(t,y) =t 8| C—x(t Plx—y[)P T , (t,y)€(0,00)xR"
+
Y,B,x >0 depend on p,q,d. C >0 chosen s.t. [pa w*(t,y)dy =1 for all
t>0,x € RY. Initial datum: w*(t,y)dy =0, Oy weakly.
Our aim: Establish connection of (L) to an associated SDE and Markov
process, as for heat equation and Brownian motion.



I
Consider the McKean—Vlasov SDE

dXe = V(|Vu(t,Xe)P~2u(t, X;) - DP-1) ¢
+H(IVu(t, Xo)| "2 u(t, X) 5 VdB, (L-SDE)
Z(X)= u(t,x)dx.

This turns out to be "the correct stochastic analogue” of the Leibenson
equation. Note:
(i) Coefficients irregular (BV-drift), degenerate (u = w* comp. supp.),
singular ((g—1)(p—1) may be <0).
(i) Drift = Vv/diffusion.

Letd>2, p> ﬁ with g(p—1) > max | 1, 2_Z+d .

There exists a family of path laws {IL*}, .rs such that

(i) L* is the path law of the unique (!) weak solution X* to (L-SDE)
with time marginals £ (X{) = w*(t,y)dy.

(ii) {IL*},cgd is @ nonlinear Markov process (explained below).

We call {IL*}, .gs Leibenson process.



.
Comparison to classical and recent special cases

g =1,p =2 (classical, linear): Fundamental solutions p(t,y,x) to heat
equation determine a unique Markov process (W), gos called Brownian
motion, consisting of unique solution laws to associated SDE

dXX =dB:, X =x.

qg=1,p> 2 (previously in [Barbu/R./Rockner24]): Fundamental solutions
w*(t,y) to p-Laplace equation determine a unique Markov
process (Py), g called p-Brownian motion, consisting of unique solution
laws to associated

dXr = V(|IVu(t,X7)P-2)dt + [Vu(t,X7)| 2" dB.
LX) = u(t.y)dy =w*(t,y)dx, t >0.

qg(p—1) > 1 (new): Fundamental solutions w*(t,y) to Leibenson
equation determine a unique Markov process (Ly), g called

Leibenson process, consisting of unique solution laws to associated
(L-SDE).
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We use and extend a method connecting nonlinear PDEs, McKean—Vlasov
SDEs and nonlinear Markov processes:

Consider the Fokker—Planck equation (NLFPE)
Oty = 95 (a(11e, x)ue) — 9i(bi(1ie, x)ue), t>0, po=¢,  (NLFPE)

a 2nd-order parabolic PDE for probability measures u; € Z2(R9); notion of
solution: distributional, no a priori regularity of a, b and u; needed.

Associated SDE is the McKean—Vlasov SDE
dXt = b( 7Xt)dt+ G( 7Xt)dBt) t Z 07 g(Xo) = Ca
(MVSDE)
where %GGT = a.

e By Itd-formula, straightforward: X weak solution to (MVSDE) —
(Ut)t>0 := ((Z(Xt)) >0 solves (NLFPE).

e (Ut)e>0 solution to (NLFPE) = 3 weak solution X to (MVSDE)
with Z(X;) = ut ("superposition principle”). Crucial: no regularity
assumptions on o, b!
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To treat nonlinear PDEs as NLFPEs, study generalized Nemytskii-case:

ai(i,y) = 8;((Tu)(y),y),  bi(i,y) = bi((T2u)(y),y),

where u = u(y)dy and I'; maps u to a function I;u, typically a differential
operator. Classical Neymtskii-case: [1u=Tou=u.

Rewriting the NLFPE as equation for densities v yields the PDE
deu(t,y) = 9 (a( y)u(t,y)) = i(bi( y)u(t,y)),
(n/PDE)

u(t,y)dy =2 ¢,

with associated McKean—Vlasov SDE

dXe = b( , X )dt + 6 ( ,X:)dB,
ZL(Xt)=u(t,y)dy, t=>0.

Such Nemytskii-coefficients are not continuous in their measure variable.
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e
MVSDE-solutions are not Markov

Even if (MVSDE) has unique solutions for all initial data Jx, the unique
solution laws (Py),crs do NOT form a Markov process in the usual sense.

But: They satisfy a suitable " nonlinear Markov property”:

Pu(ms st € A|F5) () = Pux(m: € Almo = 7s(+)) Px—ass., (nIMP)

where IP;;x denotes the solution to (MVSDE) with initial distribution
X :=Poom L.

Since
Pu: # [ Byduz(dy).

the RHS of (n/MP) is NOT equal to Py ()(7: € A) as in the classical case.

Path law families {Py}, s satisfying (n/MP) are called nonlinear Markov
processes.
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The main tool for the proof of our result is the following construction of
nonlinear Markov processes from [R./Rockner25].

For s > 0 and a measure-valued curve pt = (lt)e>0, Write Usy = (Ustt)t>0-

Let {u*} cra, U = (UF)e>0, be a family of solutions to a NLFPE with
ug = O such that

(i) (t,x) — uy is injective.

(ii) for any s >0 and x € RY, 1. is an extreme point in the set of
solutions to the linear FPE

0rve = 97 (3 (112 1, x)Ve) — 0 (bi(1l 1 x)Ve), Vo= u.

Then there is a nonlinear Markov process {Py}, cgd, with Py = unique
solution law to the corresponding MVSDE with 1D-time marginals ;.

[R./RocknerR25], [R./Romito25], [Barbu/Rockner/Zhang25] constructed
nonlinear Markov processes associated with (generalized) porous media
equation, Burgers, 2D vorticity EE and NSE, equations with fractional
Laplace, etc.
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First, we identify the Leibenson equation as the NLFPE

deu(t,y) = A(IVu(t,y) P2 u(t,y) P Du(t,y))
—div (V(|Vu(t,y) P 2u(t,y)P D) u(t,y)),

i.e. as a generalized Nemytskii-type NLFPE with coefficients

aj(1y) = 85|Vu(t,y) P 2u(t,y) P~
and
bi(k,y) = 9 (|Vu(t,y)|P~2u(t,y) P~ DY),
for u = u(y)dy. Associated McKean—-Vlasov SDE for this NLFPE is
dX: = V(|Vu(t,Xe)|P2u(t, X))@ D) de
+H(IVu(t, Xe)| "2 u(t, Xe) 5V dB, (L-SDE)
Z(X)= u(t,x)dx.
Second, we prove that the construction theorem from [R./Réckner25]
applies to the Barenblatt solutions {w*}, _pa.
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Proof of Condition (ii) for Leibenson process

We have to prove: w}, = (w*(s+t,y)dy)s>0 is an extreme point in the
set of solutions to the linear FPE

IVe =A(Vw*(s+t,y) P 2w (s+1,y) P D0 Dwy)
—div (V(|[Vw*(s+t,y) P2yX(s+ tAy)(pfl)(qfl))vt),vo = w*(s,y)dy.
The following lemma recasts this condition as a uniqueness condition:

The above extremality condition is equivalent to the following restricted
uniqueness condition:

wg, Is the unique solution to the above linear FPE in the class

{v=(Ve)ez0 : V¢ < CW},,,Vt >0 for some C > 1 independent from t}

This is a uniqueness-problem for a linear PDE with irregular, degenerate,
singular coefficients. Proof: hard!, carefully using properties of w*.
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Thank you for your attention!
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