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Motivation: Heat equation and Brownian motion

Motivation: Heat equation and Brownian motion

Fundamental link of PDE-theory and stochastic analysis: connection
between heat equation

∂tu(t,y) =
1

2
∆u(t,y), (t,y) ∈ (0,∞)×Rd (HE)

and d-dim. Brownian motion B = (Bt)t≥0: 1D-time marginal curve of B

t 7→ µ
0
t := L (Bt), t ≥ 0,

is the fundamental solution to (HE) with initial datum δ0, i.e. the heat
kernel

p(t,y ,0) = (2πt)−
d
2 exp

(
−|y |2

2t

)
, t > 0,

precisely:

µ
0
t = p(t,y ,0)dy , t > 0, µ

0
t

t→0−−→ δ0.
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Motivation: Heat equation and Brownian motion

Motivation: Heat equation and Brownian motion

Similarly, for x ∈ Rd marginal curve (µx
t )t≥0 of Brownian motion from x

Bx = (Bx
t )t≥0 := (Bt + x)t≥0,

is the fundamental solution to (HE) with initial datum δx , i.e.

µ
x
t = p(t,y ,x)dy := p(t,x−y ,0)dy , t > 0.

Of course, Bx solves the SDE

dXt = dBt , X0 = x , (SDE)

and the family of path laws (Wx)x∈Rd ,Wx := L (Bx), is a Markov process:
For A ∈B(Rd) and πt : C (R+,Rd)→Rd ,πt(w) := w(t), Markov property

Wx(πt+s ∈ A|Fs)(·) = Wπs(·)(πt ∈ A), Wx −a.s.,

holds, with transition kernels (x ,A) 7→ µx
t (A), t ≥ 0.

Conclusion: Fundamental solutions of (HE) are time marginal densities of
a uniquely determined Markov process, consisting of solutions to (SDE).
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The Leibenson equation and main result

The Leibenson equation

Instead of (HE), now consider the doubly nonlinear Leibenson equation

∂tu(t,y) = ∆p(uq(t,y)), q > 0,p > 1, (t,y) ∈ (0,∞)×Rd , (L)

where ∆p : f 7→ div
(
|∇f |p−2∇f

)
p-Laplace operator. Note:

• q = 1: p-Laplace equation

• p = 2: ∆2 = ∆, Porous Media equation

• (p,q) = (2,1): Heat equation (linear).

∃ explicit Barenblatt solutions, for q(p−1) > 1:

w x(t,y) := t−
d
β

[
C −κ

(
t−

1
β |x−y |

) p
p−1

]γ

+

, (t,y) ∈ (0,∞)×Rd .

γ,β ,κ > 0 depend on p,q,d . C > 0 chosen s.t.
∫
Rd w x(t,y)dy = 1 for all

t > 0,x ∈ Rd . Initial datum: w x(t,y)dy
t→0−−→ δx weakly.

Our aim: Establish connection of (L) to an associated SDE and Markov
process, as for heat equation and Brownian motion.
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The Leibenson equation and main result

Consider the McKean–Vlasov SDE
dXt = ∇

(
|∇u(t,Xt)|p−2u(t,Xt)

(q−1)(p−1))dt
+
(
|∇u(t,Xt)|

p−2
2 u(t,Xt)

(q−1)(p−1)
2

)
dBt ,

L (Xt) = u(t,x)dx .

(L-SDE)

This turns out to be ”the correct stochastic analogue” of the Leibenson
equation. Note:

(i) Coefficients irregular (BV -drift), degenerate (u = w x comp. supp.),
singular ((q−1)(p−1) may be < 0).

(ii) Drift = ∇
√

diffusion.

Theorem (Barbu/Grube/R./Röckner25)

Let d ≥ 2, p > d
d−1 with q(p−1) > max

(
1, 2−p+d

d

)
.

There exists a family of path laws {Lx}x∈Rd such that

(i) Lx is the path law of the unique (!) weak solution X x to (L-SDE)
with time marginals L (X x

t ) = w x(t,y)dy.

(ii) {Lx}x∈Rd is a nonlinear Markov process (explained below).

We call {Lx}x∈Rd Leibenson process.
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The Leibenson equation and main result

Comparison to classical and recent special cases

q = 1,p = 2 (classical, linear): Fundamental solutions p(t,y ,x) to heat
equation determine a unique Markov process (Wx)x∈Rd called Brownian
motion, consisting of unique solution laws to associated SDE

dX x
t = dBt , X x

0 = x .

q = 1,p > 2 (previously in [Barbu/R./Röckner24]): Fundamental solutions
w x(t,y) to p-Laplace equation determine a unique nonlinear Markov
process (Px)x∈Rd called p-Brownian motion, consisting of unique solution
laws to associated MV-SDE

dX x
t = ∇(|∇u(t,X x

t )|p−2)dt + |∇u(t,X x
t )|

p−2
2 dBt ,

L (X x
t ) = u(t,y)dy = w x(t,y)dx , t ≥ 0.

q(p−1) > 1 (new): Fundamental solutions w x(t,y) to Leibenson
equation determine a unique nonlinear Markov process (Lx)x∈Rd called
Leibenson process, consisting of unique solution laws to associated
MV-SDE (L-SDE).
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General scheme

We use and extend a method connecting nonlinear PDEs, McKean–Vlasov
SDEs and nonlinear Markov processes:

Consider the nonlinear Fokker–Planck equation (NLFPE)

∂tµt = ∂
2
ij (a(µt ,x)µt)−∂i (bi (µt ,x)µt), t ≥ 0, µ0 = ζ , (NLFPE)

a 2nd-order parabolic PDE for probability measures µt ∈P(Rd); notion of
solution: distributional, no a priori regularity of a,b and µt needed.

Associated SDE is the distribution-dependent McKean–Vlasov SDE

dXt = b(L (Xt),Xt)dt + σ(L (Xt),Xt)dBt , t ≥ 0, L (X0) = ζ ,
(MVSDE)

where 1
2σσT = a.

• By Itô-formula, straightforward: X weak solution to (MVSDE) =⇒
(µt)t≥0 := (L (Xt))t≥0 solves (NLFPE).

• (µt)t≥0 solution to (NLFPE) =⇒ ∃ weak solution X to (MVSDE)
with L (Xt) = µt (”superposition principle”). Crucial: no regularity
assumptions on σ ,b!
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General scheme

To treat nonlinear PDEs as NLFPEs, study generalized Nemytskii-case:

aij(µ,y) = ãij((Γ1u)(y),y), bi (µ,y) = b̃i ((Γ2u)(y),y),

where µ = u(y)dy and Γi maps u to a function Γiu, typically a differential
operator. Classical Neymtskii-case: Γ1u = Γ2u = u.

Rewriting the NLFPE as equation for densities u yields the nonlinear PDE

∂tu(t,y) = ∂
2
ij (ãij((Γ1u(t))(y),y)u(t,y))−∂i (b̃i ((Γ2u(t))(y),y)u(t,y)),

(nlPDE)

u(t,y)dy
t→0−−→ ζ ,

with associated McKean–Vlasov SDE

dXt = b̃((Γ2u(t))(Xt),Xt)dt + σ̃((Γ2u(t))(Xt),Xt)dBt ,

L (Xt) = u(t,y)dy , t ≥ 0.

Such Nemytskii-coefficients are not continuous in their measure variable.
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General scheme

MVSDE-solutions are not Markov

Even if (MVSDE) has unique solutions for all initial data δx , the unique
solution laws (Px)x∈Rd do NOT form a Markov process in the usual sense.

But: They satisfy a suitable ”nonlinear Markov property”:

Px(πs+t ∈ A|Fs)(·) = Pµx
s
(πt ∈ A|π0 = πs(·)) Px −a.s., (nlMP)

where Pµx
s

denotes the solution to (MVSDE) with initial distribution
µx
s := Px ◦π−1s .

Since

Pµx
s
6=
∫
Rd

Pydµ
x
s (dy),

the RHS of (nlMP) is NOT equal to Pπs(·)(πt ∈ A) as in the classical case.

Path law families {Px}x∈Rd satisfying (nlMP) are called nonlinear Markov
processes.
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General scheme

The main tool for the proof of our result is the following construction of
nonlinear Markov processes from [R./Röckner25].

For s > 0 and a measure-valued curve µ = (µt)t≥0, write µs+ := (µs+t)t≥0.

Theorem (R./Röckner25)

Let {µx}x∈Rd , µx = (µx
t )t≥0, be a family of solutions to a NLFPE with

µx
0 = δx such that

(i) (t,x) 7→ µx
t is injective.

(ii) for any s > 0 and x ∈ Rd , µx
s+ is an extreme point in the set of

solutions to the linear FPE

∂tνt = ∂
2
ij

(
aij(µ

x
s+t ,x)νt

)
−∂i

(
bi (µ

x
s+t ,x)νt

)
, ν0 = µ

x
s .

Then there is a nonlinear Markov process {Px}x∈Rd , with Px = unique
solution law to the corresponding MVSDE with 1D-time marginals µx

t .

[R./RöcknerR25], [R./Romito25], [Barbu/Röckner/Zhang25] constructed
nonlinear Markov processes associated with (generalized) porous media
equation, Burgers, 2D vorticity EE and NSE, equations with fractional
Laplace, etc.
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Proof: Application to the Leibenson equation

First, we identify the Leibenson equation as the NLFPE

∂tu(t,y) = ∆
(
|∇u(t,y)|p−2u(t,y)(p−1)(q−1)u(t,y)

)
−div

(
∇
(
|∇u(t,y)|p−2u(t,y)(p−1)(q−1)

)
u(t,y)

)
,

i.e. as a generalized Nemytskii-type NLFPE with coefficients

aij(µ,y) = δij |∇u(t,y)|p−2u(t,y)(p−1)(q−1)

and
bi (µ,y) = ∂i

(
|∇u(t,y)|p−2u(t,y)(p−1)(q−1)

)
,

for µ = u(y)dy . Associated McKean–Vlasov SDE for this NLFPE is
dXt = ∇

(
|∇u(t,Xt)|p−2u(t,Xt)

(q−1)(p−1))dt
+
(
|∇u(t,Xt)|

p−2
2 u(t,Xt)

(q−1)(p−1)
2

)
dBt ,

L (Xt) = u(t,x)dx .

(L-SDE)

Second, we prove that the construction theorem from [R./Röckner25]
applies to the Barenblatt solutions {w x}x∈Rd .
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Proof: Application to the Leibenson equation

Proof of Condition (ii) for Leibenson process

We have to prove: w x
s+ = (w x(s + t,y)dy)t≥0 is an extreme point in the

set of solutions to the linear FPE

∂νt =∆
(
|∇w x(s + t,y)|p−2w x(s + t,y)(p−1)(q−1)νt

)
−div

(
∇
(
|∇w x(s + t,y)|p−2w x(s + t,y)(p−1)(q−1)

)
νt

)
,ν0 = w x(s,y)dy .

The following lemma recasts this condition as a uniqueness condition:

Lemma

The above extremality condition is equivalent to the following restricted
uniqueness condition:

w x
s+ is the unique solution to the above linear FPE in the class{
ν = (νt)t≥0 : νt ≤ Cw x

s+t , ∀t ≥ 0 for some C ≥ 1 independent from t
}

This is a uniqueness-problem for a linear PDE with irregular, degenerate,
singular coefficients. Proof: hard!, carefully using properties of w x .
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